

FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography

Diffusion Tensor Imaging - basic principles

- Diffusion in brain tissues
- Apparent Diffusion Coefficient
- Diffusion Tensor model
- Tensor-derived measures

Brownian motion

Robert Brown (1773-1858)

Molecules are in constant motion

Brownian motion

Robert Brown (1773-1858)

Molecules are in constant motion

Adolf Fick (1829-1901)

Brownian motion

Robert Brown (1773-1858)

Molecules are in constant motion

Adolf Fick (1829-1901)

Albert Einstein (1879-1955)

 $\langle x^2 \rangle = 2nDt$ time

displacement

Time

Restricted Diffusion

"Apparent" diffusion coefficient (ADC) depends on the diffusion experiment!

Measuring diffusion with MRI

Diffusion contrast is modulated by:

Gradient strength
Gradient orientation
Diffusion time

Apparent diffusion coefficient

Pfeuffer et al, NMR Biomed 1998

Orientation contrast in Diffusion MR

Anisotropy of the Apparent diffusion coefficient

Beaulieu, NMR Biomed 2002

Diffusion tensor model

Iso-probability contour

Diffusion tensor model

Diffusion tensor model Estimation

Diffusion tensor model eigenspectrum

V1 map

V1

L1=ADCmax L3=ADCmin

L1+L2+L3 = 3x(average ADC)

Tensor-derived measures

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

Tensor-derived parameters: Fractional Anisotropy

- FA encodes how strongly directional diffusion is
 - (derived from diffusion tensor eigenvalues)
- Hence good marker for WM integrity
 - i.e., good marker for disease, development, etc.

- Nice to have 3 orthogonal (independent) tensor-derived measures: MD, FA & "Mode"
- Mode: is the tensor tubular (one strong fibre) or flatcylindrical (two strong fibres)?

At "normal" resolutions, tracts appear thinner than they really are primarily because of the interference between orthogonal anisotropy in GM and WM

original 0.7mm data -> FA

data smoothed to match 2mm data -> FA

data smoothed to match 3.5mm data -> FA

high-resolution ex-vivo diffusion data: McNab & Miller (FMRIB)

computation resources: Jones, Stathakis & Wise (CUBRIC cluster)

VBM-style Analysis of FA

- VBM [Ashburner 2000, Good 2001]
- Align all subjects' data to standard space
- Segment -> grey matter segmentation
- Smooth GM
- Do voxelwise stats (e.g. controls-patients)
- VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
- Like VBM but no segmentation needed

VBM-style Analysis of FA

- VBM [Ashburner 2000, Good 2001]
- Align all subjects' data to standard space
- Segment -> grey matter segmentation
- Smooth GM
- Do voxelwise stats (e.g. controls-patients)
- VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
- Like VBM but no segmentation needed

Büchel 2004

VBM-style Analysis of FA

- Strengths
 - Fully automated & quick
 - Investigates whole brain
- Problems [Bookstein 2001, Davatzikos 2004, Jones 2005]
 - Alignment difficult; smallest systematic shifts between groups can be incorrectly interpreted as FA change
 - Needs smoothing to help with registration problems
 - No objective way to choose smoothing extent

Hand-placed voxel/ROI-based FA Comparison

labour-intensive, subjective, potentially inaccurate, doesn't investigate whole brain

Tractography-Based FA Comparison

- Method [Gong 2005, Corouge 2006]
 - Define a given tract in all subjects
 - Parameterise FA along tract
 - Compare between subjects
- Strength: correspondence issue hopefully resolved
- Problems
 - Currently requires manual intervention to specify tract
 - Hence doesn't investigate whole brain
 - Projection of FA onto tract needs careful thought

Tractography-Based FA Comparison

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

I. Use medium-DoF nonlinear reg to pre-align all subjects' FA (nonlinear reg: FNIRT)

I. Use medium-DoF nonlinear reg to pre-align all subjects' FA (nonlinear reg: FNIRT)

2. Create mean FA image (no smoothing)

2. "Skeletonise" Mean FA

2. "Skeletonise" Mean FA

3. Threshold Mean FA Skeleton

giving "objective" tract map

3. Threshold Mean FA Skeleton

giving "objective" tract map

3. Threshold Mean FA Skeleton

giving "objective" tract map

4. For each subject's warped FA, fill each point on the mean-space skeleton with nearest maximum FA value (i.e., from the centre of the subject's nearby tract)

4. For each subject's warped FA, fill each point on the mean-space skeleton with nearest maximum FA value (i.e., from the centre of the subject's nearby tract)

subject 2 subject 3 subject 4

2

subject 5

one skeleton voxel's data vector (to be fed into GLM)

v

5. Do cross-subject voxelwise stats on skeleton-projected FA

one skeleton voxel's data vector (to be fed into GLM)

Do cross-subject voxelwise stats on skeleton-projected FA
 Threshold, (e.g., permutation testing, including multiple comparison correction)

Testing for Gaussianity

- 36 controls & 33 schizophrenics (Mackay)
- Test each voxel across subjects for Gaussianity using Lilliefors at 5%
- No smoothing with any preprocessing method

Repeatability Tests

- 8 controls scanned twice each
- Measure %CoV across sessions & subjects
- Test hand-placed points and global mode & median

Differences in healthy controls

Normal variation in bimanual co-ordination skill

- Inter-individual variation in FA along a specific motor pathway is related to variation in motor skill
- Experience-dependent structural changes?

Differences in healthy controls

Normal variation in bimanual co-ordination skill

- Inter-individual variation in FA along a specific motor pathway is related to variation in motor skill
- Experience-dependent structural changes?

Schizophrenia (Mackay)

TBSS & VBM show reduced FA in corpus callosum & fornix VBM shows spurious result in thalamus due to increased ventricles in schiz.

TBSS mean FA (controls) mean FA (schiz.) VBM

TFCE for TBSS

controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise

cluster-based: cluster-forming threshold = 2 or 3

TFCE

Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

- 15 MS patients
- Yellow = -ve corr. FA vs EDSS
- Blue = group lesion probability (50%)
 Red = -ve corr. FA vs lesion volume Note reduced FA away from lesions

Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

Lower FA in Stutterers in ventral-premotor (Watkins)

Red - FA contrast of Controls > PWS

Lower FA in Stutterers in ventral-premotor (Watkins)

Green - FA tract skeleton

Red - FA contrast of Controls > PWS

TBSS & FSL-VBM in adolescent-onset schizophrenia Douaud & James, Brain 2007

FA reduction GM reduction

TBSS - Conclusions

- Attempting to solve correspondence/smoothing problems
- Less ambiguity of interpretation / spurious results than VBM
- Easier to test whole brain than ROI / tractography
- Limitations & Dangers
 - Interpretation of partial volume tracts still an issue
 - Crossing tracts?
- Future work
 - Use full tensor (for registration and test statistic)
 - Use other test statistics (MD, PDD, width)
 - Multivariate stats (across voxels and/or different diffusion measures) & discriminant (ICA, SVM)

FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography

Connectivity - Why do we care?

- Clinical measurements
 - White matter (dys)connectivity is thought to form the substrate for many different neurological and psychiatric disorders.

Evangelou et al. 2000

E.g. axonal degeneration/ demyelination in MS.

- Diffusion tractography allows in-vivo measurements specific to different connections.

Passingham et al, NNR, 2003

Passingham et al, NNR, 2003

Investigating connectivity

Investigating connectivity

 Tracer studies in non-human animals

- In human
- Post-mortem dissection reveals large tracts
 - Post-mortem histology shows degeneration after remote lesions

Post-mortem

- Fractional anisotropy
- Principal diffusion direction

- Fractional anisotropy
- Principal diffusion direction

- Fractional anisotropy
- Principal diffusion direction

- Fractional anisotropy
- Principal diffusion direction

- Fractional anisotropy
- Principal diffusion direction

Streamline tractography can dissect major bundles

Cingulum

Derek Jones

But elsewhere...Uncertainty in fibre orientation.

Derek Jones

But elsewhere...Uncertainty in fibre orientation.

Derek Jones

• Remember ... a long time ago in the world of fMRI ...

- Remember ... a long time ago in the world of fMRI ...
- We estimated two things:
 - A cope file (the parameters)
 - A varcope file (uncertainty in these parameters)

- Remember ... a long time ago in the world of fMRI ...
- We estimated two things:
 - A cope file (the parameters)
 - A varcope file (uncertainty in these parameters)
- We estimated our parameters, and their uncertainty from a single dataset.

- Remember ... a long time ago in the world of fMRI ...
- We estimated two things:
 - A cope file (the parameters)
 - A varcope file (uncertainty in these parameters)
- We estimated our parameters, and their uncertainty from a single dataset.
- Can we do a similar thing with Diffusion parameters?

* FDT tractography uses a simple model of local diffusion o A single anisotropic direction with isotropic background diffusion

* Reasons:

o No ambiguity between ADC profile and uncertainty

- o Avoid errors due to sorting eigenvectors in DTI
- o Simplifies extensions to multiple fibre orientations

BS

- Form testable hypotheses.
- Ask questions about parameters of interest

BOL

- Form testable hypotheses.
- Ask questions about parameters of interest
- Extra sensitivity gained from assumptions

BOL

- Form testable hypotheses.
- Ask questions about parameters of interest
- Extra sensitivity gained from assumptions
- Only estimate complexity that is supported by the data

Uncertainty from a single dataset

- Form testable hypotheses.
 - Ask questions about parameters of interest
- Extra sensitivity gained from assumptions
- Only estimate complexity that is supported by the data

-/

耕

117

Probabilistic tractography

 But now, we no longer have a single direction at each voxel. How can we do tractography?

'Streamlining'

Probabilistic tractography Behrens et al, 2003, Parker et al. 2003, Hagmann et al 2003, Jones et al. 2004

Probabilistic tractography

 But now, we no longer have a single direction at each voxel. How can we do tractography?

'Streamlining'

Probabilistic tractography Behrens et al, 2003, Parker et al. 2003, Hagmann et al 2003, Jones et al. 2004

Probabilistic Tractography

•Allows you to track into regions of low anisotropy, eg grey matter

 Provides
quantitative (see later) probability
of connection
from A to B

Behrens et al, MRM, 2003

Thalamic connections with cortex

MD -> PFC

VL -> M1

Cd

VPLo

VPI

<u>9.6 mm</u>

RT/

GL

٧Lo

MD

СМ

Functional validation: meta-analysis of FMRI activations within thalamus

Cerebral Cortex, 2005

Johansen-Berg et al,

Correspondence between functional activations and connectivity-defined volumes: motor tasks

Correspondence between functional activations and connectivity-defined volumes: executive tasks

Posterior PL <->Anterior PMC

Posterior PL <->Anterior PMC Anterior PL <-> Posterior PMC

Posterior PL <->Anterior PMC Anterior PL <-> Posterior PMC Lateral PL <-> Frontal Eye Fields

Posterior PL <->Anterior PMC Anterior PL <-> Posterior PMC Lateral PL <-> Frontal Eye Fields

Tracking Parietal -> Medial premotor regions in 9 subjects

Tracking Parietal -> Medial premotor regions in 9 subjects

Tracking Parietal -> Medial premotor regions in 9 subjects

Using multi-fibre modelling.

Using multi-fibre modelling.

Using multi-fibre modelling.

Topography of premotor connections in parietal lobe.

Average of 9 subjects. Tracking from parietal To: Anterior Premotor Posterior Premotor

Frontal Eye Fields

Behrens and Rushworth

Topography of premotor connections in parietal lobe.

Average of 9 subjects. Tracking from parietal To: Anterior Premotor Posterior Premotor

Frontal Eye Fields

Behrens and Rushworth

Connectivity of prefrontal cortex

Hayashi T et al. Society for Neuroscience, Atlanta 2006

What is a quantitative measure of connectivity?

- Number of axons connecting 2 areas?
- Proportion of axons from a seed that reach a target?
- "Integrity" of the connecting white matter ...
 - -Effective conductivity?
 - -Degree of myelination?
 - -Packing density?
- What are we measuring?
 - -The probability that the **dominant** path through the diffusion field passes through this region.

FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography

BEDPOSTX GUI options

Data

Model parameters

BEDPOSTX Results

• Sample orientations

• Sample fractional volumes _____

merged_th1samples.nii.gz merged_ph1samples.nii.gz merged_th2samples.nii.gz merged_ph2samples.nii.gz

merged_f1samples.nii.gz merged_f2samples.nii.gz

Mean orientation

dyads1.nii.gz dyads2.nii.gz

Mean fractional volumes

mean_f1samples.nii.gz mean_f2samples.nii.gz

BEDPOSTX Results

• Mean orientation

dyads1.nii.gz

dyads2.nii.gz

BEDPOSTX

Results

BEDPOSTX Results

Mean orientation

dyads1.nii.gz dyads2.nii.gz

maskdyads dyads2 mean_f2samples

BEDPOSTX

Modelling crossing fibres

- large portion of the white matter voxels has two fibres
- Crossing fibres form form coherent bundles

BEDPOSTX Modelling crossing fibres

I fibre

2 fibres

Seed specification

- Different ways of specifying seeds
- Allow seed specification in a different space

😝 😑 😁 📉 FDT – FMRIB's Diffusion Toolbox 2.0
PROBTRACKX Probabilistic tracking 😑
Data Options
BEDPOSTX directory
Seed Space Single voxel Seed reference image: Single voxel O O Vox Imm Single mask Multiple masks Optional Targets Waypoints masks
Termination mask Output file:
Go Exit Help

Seed specification

single voxel — Constrained on the single mask — Constrained on the single masks — Constrained on the single mask —

Seed specification

• Different seed spaces

Diffusion space Structural space Standard space

PROBTRACKX (optional) Targets specification

Waypoints
Exclusion
Termination
Classification
Quantification of connectivity

PROBTRACKX (optional) Targets specification

Waypoints
Exclusion
Termination
Classification
Quantification of connectivity

ALL THE TARGETS IN THE SAME SPACE AS THE SEEDS

(optional) Targets specification

- Waypoints
- Exclusion
- Termination
- Classification

PROBTRACKX Probabilistic tracking -
Data Options
BEDPOSTX directory // Isers/saad/data/Edtx_test/bedpostX
Seed Space
Single mask 🛁 Mask image: /Users/saad/data/Fdtx_test/pmcdL.nii.gz 🤤
Seed space is not diffusion
Select Seed to diff transform /Users/saad/data/Fdtx_test/bedpost/struct2di
Optional Targets
Waypoints masks
(Lisers(saad/data/Edty_test/MSP nii gz
Add Image Remove Image Load List Save List
Exclusion mask /Users/saad/data/Fdtx_test/MSP.nii.gz
Termination mask //Users/saad/data/Fdtx_test/thal_first.nii.gz
Targets list
/Users/saad/data/Fdtx_test/MSP.nii.gz /Users/saad/data/Fdtx_test/ponsL.nii.gz
Add Image Remove Image Load List Save List
Output directory: /Users/saad/data/Fdtx_test/pmc4
Go Exit Help

Dissecting a specific tract Cortico-spinal tract

Seed: MI, hand area

No targets

Dissecting a specific tract Cortico-spinal tract

Seed: MI, hand area

Exclusion: Mid-Sagittal plane

Dissecting a specific tract Cortico-spinal tract

Seed: MI, hand area

Waypoint: Internal Capsule

Dissecting a specific tract Cortico-spinal tract

Seed: dorsal PMC

No targets

Dissecting a specific tract Cortico-spinal tract

Seed: dorsal PMC

Waypoint: Corpus Callosum

Dissecting a specific tract Cortico-cerebellar projections

Seed: MI hand

Waypoint: Thalamus

Termination: Thalamus

Cortex

Pons

Connectivity-based seed classification

- Quantify the connectivity of seed regions to target regions
- e.g. thalamic voxels can be classified according to their probability of connection to specific cortical targets

Connectivity-based seed classification

Thalamic segmentation

🖯 🕙 📉 FDT – FMRIB's Diffusion Toolbox 2.0
PROBTRACKX Probabilistic tracking 🛁
Data Options
BEDPOSTX directory /Users/saad/data/Fdtx_test/bedpostX
Seed Space
Single mask 🦳 Mask image: /Users/saad/Desktop/MASK_average_thal_rig 🔄
Seed space is not diffusion
Select Seed to diff transform /Users/saad/data/Fdtx_test/bedpost/std2diff.i 🔄
Optional Targets
Waypoints masks
Exclusion mask
Termination mask
Targets list
/Users/saad/data/Fdtx_test/MASK_average_M1_right.nii.gz
/Users/saad/data/Fdtx_test/MASK_average_S1_right.nii.gz
/Users/saad/data/Fdtx_test/MASK_average_pfc_right.nii.gz
/Users/saad/data/Fdtx_test/MASK_average_pmc_right.nii.gz
Add Image Remove Image Load List Save List
Output directory: // Isers/saad/data/Edtx_test/thalclass

Exit

Help

Discussion What are we (not) measuring?

- Distribution of a fibre orientation rather than distribution of fibre orientations
- Thresholding tract distribution is tricky
- Bins (voxels) are arbitrary
- Favour seed classification for quantitative analysis (masks are meaningful)

FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography

