

Part 2

#### ANALYSIS OF DTI DATA

DO TROMP - 2015

#### DTI ANALYSIS STEPS (Tutorial 1):

- 1. From scanner format to a usable format
- 2. Correct distortions common to diffusion images (EPI and eddy currents)
- 3. Remove any non-brain tissues
- 4. Make the gradient direction file
- 5. Fit the tensors
- 6. Check the fit of the tensors

#### DTI ANALYSIS STEPS (Tutorial 2):

- 1. Standardize tensor images for normalization
- 2. Make population template by normalizing images
- 3. Register population template to MNI space
- 4. Produce scalar images (FA, MD, AD, RD) and check quality
- 5. Run whole brain voxel-wise statistics

#### 1. Standardize tensor images for normalization

- Use correct diffusivity unit for DTI-TK:
  - DTI-TK uses: 0.001 mm<sup>2</sup>/s
  - Our unit is: 1 m<sup>2</sup>/s
  - Thus multiply our tensor image with factor: 10<sup>9</sup>
- Remove extreme outliers
- Make sure all tensors are symmetric and positive

| 0.001        | C mm <sup>2</sup> |
|--------------|-------------------|
| 0.00000001   | m <sup>2</sup>    |
| 9 💠 Decimals |                   |

## 2. Normalization, Why?

- Establishes a one-to-one correspondence between the brains of different individuals; by minimizing the sum of squared differences between each subject and the template
- Allows for:
  - Identification of commonalities and differences between groups (e.g. patients vs. healthy individuals)
- Advantages:
  - Significant clusters can be reported according to their Euclidian coordinates within a standard space (e.g. MNI or Tailarach)

Subject 1



Normalization



Subject N







#### • Linear Registration:

- Rigid transformation
  (rotation & translation in x, y, z)
- Affine transformation
  (rotation, translation, shear, zoom in x, y, z)
- Non-linear Registration:
  - Diffeomorphic transformation (warp)





#### Rigid transformations in 3 dimensions:



Source: <u>Wellcome Trust Centre</u>

#### Diffeomorphic transformation in 3 dimensions (2 shown):



Deformation Field in X



Field Applied To Image





Dark – shift down, Light – shift up Defo





Deformed Image





Source: Wellcome Trust Centre

#### Linear Transform





Adapted from: ANTS Manual



Adapted from: ANTS Manual



Source: DTI-TK

## 2. Normalization, Tensors?



Zhang et al. (2006)

![](_page_14_Figure_0.jpeg)

Tensor normalization is most reliable in regions with high anisotropy

#### 3. Register population template to MNI space

Cross modality registration: Population FA -> MNI T1

![](_page_15_Figure_2.jpeg)

#### 3. Register population template to MNI space

#### JHU white matter atlas in MNI space

![](_page_16_Figure_2.jpeg)

#### http://www.dtiatlas.org

#### 4. Produce scalar images (FA, MD, AD, RD)

TVtool -in tensor.nii.gz -fa -out tensor\_fa.nii.gz TVtool -in tensor.nii.gz -tr -out tensor\_tr.nii.gz TVtool -in tensor.nii.gz -ad -out tensor\_ad.nii.gz TVtool -in tensor.nii.gz -rd -out tensor\_rd.nii.gz

![](_page_18_Figure_2.jpeg)

## 4. Produce scalar images (FA, MD, AD, RD)

![](_page_19_Figure_1.jpeg)

![](_page_20_Picture_0.jpeg)

#### 5. Run whole brain voxel-wise statistics

- Statistical analyses of DTI scalar images in MNI space are identical to analyses of other modalities (e.g. fMRI/T1/PET)
- Tract-based spatial statistics (TBSS) commonly used method due to its implementation in FSL, its issues:
  - Improved normalization tools reduce efficacy of TBSS
  - Easy to miss effects in smaller tracts

![](_page_21_Picture_5.jpeg)

#### 5. Run whole brain voxel-wise statistics

- Instead use:
  - Statistical parametric mapping (SPM; MatLab based)
  - Randomise (FSL; will run non-parametric tests)
  - More background on this with Jeanette Mumford

#### 5. Run whole brain voxel-wise statistics

#### eTable 1. Group Differences in Whole-Brain, Voxelwise FA Values

|             | Region                   | Peak Coordinates<br>(x,y,z) | Size<br>(mm <sup>3</sup> ) |
|-------------|--------------------------|-----------------------------|----------------------------|
| Full Sample | R uncinate fasciculus*   | 27, 42, -3                  | 78                         |
|             | L uncinate fasciculus**  | -24, 27, 2                  | 110                        |
|             | R arcuate fasciculus     | 41, -41, 17                 | 135                        |
|             | L inferior frontal gyrus | -42, 21, -8                 | 1736                       |
|             |                          |                             |                            |

## 6. Share your data

![](_page_24_Picture_1.jpeg)

# neurosynth.org

Neurosynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data.

It takes thousands of published articles reporting the results of fMRI studies, chews on them for a bit, and then spits out images that look like this:

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_6.jpeg)

An automated meta-analysis of 671 studies of reward

![](_page_24_Picture_8.jpeg)

## **Questions?**