Diffusion Tensor Image processing

The basics

Do Tromp - 2012

FROM TENSOR TO TRACTS Diffusion Tensor Imaging Basics

Diffusion Tensor Imaging Basics

2. Brain diffusion

3. In Vivo White Matter

The tensor shape follows the water diffusion

The Tensor

The relative degree of anisotropy

as measured by the weighted average – dominated by the largest component

Fractional Anisotropy

Axial Diffusivity λ_1

Mean Diffusivity $(\lambda_1 + \lambda_2 + \lambda_3)/3$

Radial Diffusivity $(\lambda_2 + \lambda_3)/2$

DTI and Microstructure

	FA	MD	AD	RD
		$(\lambda_1 + \lambda_2 + \lambda_3)/3$	λ_1	$(\lambda_2 + \lambda_3)/2$
Gray Matter	\checkmark	-	\bullet	^
White Matter	1	_	^	\checkmark
CSF	\checkmark	^	^	^
High myelination	1	\checkmark	—	\checkmark
Dense axonal packing	↑	↓	-	↓
WM Maturation	1	\checkmark	^	\checkmark
Axonal degeneration	¥	^	¥	^
Demyelination	$\mathbf{\bullet}$	^	—	^
Low SNR	$\mathbf{+}$	^	$\mathbf{+}$	_

Ref: Alexander et. al. (2012). Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains. Brain Connectivity.

Fiber Tracking

Processing Pipeline

FROM SCANNER TO STATISTICS

1. DICOM to NIFTI

#list scan dirs

ls /study/\$your_study/raw_data/\$subject_nr/dicoms/

redwood:dicoms	tromp\$ ls						
cardiac/	s04 3dtof/	s1000 ADC/	s1100 ADC/	s1200 ADC/	s13 fse xl/	s15 3dtof/	s802 CMB/
s01 assetcal/	s07 ² dfast/	s1001 FA/	s1101 FA/	s1201 FA/	s1400 COLLAPSE/	s400 COLLAPSE/	s900 ADC/
s02 bravo/	s08 dti/	s1002 CMB/	s1102 CMB/	s1202 CMB/	s14 3dtof/	s800 ADC/	s901 FA/
s03_fse_xl/	s09_dti/	s10_dti/	s11_dti/	s12_dti/	s1500_COLLAPSE/	s801_FA/	s902_CMB/

#convert from DICOM to NIfTI

convert_file s08_dti /\$output_dir/\$subject_nr_s08_dti nii

fslinfo subj_s09_dti.nii

data_type	INT16
dim1	256
dim2	256
dim3	67
dim4	49
datatype	4
pixdim1	1.00
pixdim2	1.00
pixdim3	2.00
pixdim4	1000.00
cal_max	0.0000
cal_min	0.0000
file_type	NIFTI-1-

2. Eddy Current Correction

Distortions

d

Uncorrected

Registration

Corrected

3. Fieldmap (EPI) Distortion Correction

3. Fieldmap (EPI) Distortion Correction

4. Brain Extraction

- FSL tool brain extraction tool (bet)
- AFNI tool 3dSkullStrip
- Manual stripping fslview

Unfixed mask

Manual fixed mask

Tensor fitting

5. Produce SCHEME files

0.000000	0.000000	0.000000	0.000E00	
0.894652	-0.004314	-0.446744	1.000E09	LA CARA
-0.002455	-0.452065	-0.891982	1.000E09	
0.444643	-0.895686	0.006279	1.000E09	
0.891854	-0.452289	0.005567	1.000E09	Can
-0.000693	-0.897000	-0.442029	1.000E09	10000
0.452735	-0.007309	-0.891615	1.000E09	
0.894354	-0.006560	0.447313	1.000E09	
-0.000430	0.442349	-0.896843	1.000E09	NH 30 621
-0.449481	-0.893270	0.005917	1.000E09	「人」
0.896627	0.442770	-0.003869	1.000E09	
-0.000052	-0.891742	0.452544	1.000E09	ELX17
-0.447324	-0.004350	-0.894362	1.000E09	

Tensor fitting

5. Produce SCHEME files

- 6. Convert from NIfTI (.nii) to CAMINO (.Bfloat)
- 7. Run tensor model fit with CAMINO
- 8. Check the sanity of the fit
- 9. Convert from CAMINO to NIfTI

0.000000	0.000000	0.000000	0.000E00	State State
0.894652	-0.004314	-0.446744	1.000E09	
-0.002455	-0.452065	-0.891982	1.000E09	
0.444643	-0.895686	0.006279	1.000E09	
0.891854	-0.452289	0.005567	1.000E09	Par
-0.000693	-0.897000	-0.442029	1.000E09	600
0.452735	-0.007309	-0.891615	1.000E09	
0.894354	-0.006560	0.447313	1.000E09	
-0.000430	0.442349	-0.896843	1.000E09	NIN 35 45
-0.449481	-0.893270	0.005917	1.000E09	
0.896627	0.442770	-0.003869	1.000E09	
-0.000052	-0.891742	0.452544	1.000E09	El tra
-0.447324	-0.004350	-0.894362	1.000E09	1980

Camino

Tensor fitting

- 5. Produce SCHEME files
- 6. Convert from NIfTI to CAMINO
- 7. Run tensor model fit with CAMINO
- 8. Check the sanity of the fit
- 9. Convert from CAMINO to NIfTI

10. Produce Scalars (FA, MD, AD, RD)

TVtool -in tensor.nii.gz -fa -out tensor_fa.nii.gz TVtool -in tensor.nii.gz -tr -out tensor_md.nii.gz TVtool -in tensor.nii.gz -ad -out tensor_ad.nii.gz TVtool -in tensor.nii.gz -rd -out tensor_rd.nii.gz

11. Fiber Tracking

• Run fiber tractography on the tensor files

- Convert track files to Trackvis format (.trk)
- Open in Trackvis

11. Fiber Tracking

11. Fiber Tracking

Tract-based analysis (TBA)

Testing a difference between the average FA (or MD, RD, AD) between groups for a specific WM pathway.

Voxel Based Analysis

t-stat map of higher FA with age in genu of CC

t-stat map of Jacobian deformation with age

Cerebellum tracts showing t-stat coloring of FA change with age

Comparison VBA - TBA

- Whole Brain (VBA) vs. Tract Specific (TBA)
- Same data different grouping
- VBA requires a large correction for multiple comparison since you are testing all the voxels in the brain. This can reduce the sensitivity
- TSA requires an a priori hypothesis on what brain regions and white matter tracts are of interest.

Normalization Tools

ANTS is an excellent tool for scalar (e.g. FA, T1) based normalization, registration and atlas development

DTI-TK is a tensor based normalization tool, thus better capable of retaining the higher order information

Tensor Normalization with DTI-TK

1. Bootstrapping

TVMean -in \${subj_list_file}.txt -out mean_initial.nii.gz TVResample -in mean_initial.nii.gz -vsize 1.5 1.75 2.25 -size 128 128 64

2. Rigid Alignment with Bootstrapped Template

sh dti_rigid_population mean_initial.nii.gz \${subj_list_file}.txt EDS 3

3. Affine Alignment with Final Refined Template Estimate from Rigid Alignment sh dti_affine_population mean_rigid3.nii.gz \${subj_list_file}.txt EDS 3

4. Deformable Alignment with the Final Refined Template Estimate from Affine Alignment

TVtool -tr -in mean_affine3.nii.gz

BinaryThresholdImageFilter mean_affine3_tr.nii.gz mask.nii.gz 0 .01 100 1 0 sh dti diffeomorphic population mean affine3.nii.gz \${subj list file} aff.txt mask.nii.gz 0.002

