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A Statistical Model

What is a statistical model?

Formally, a statistical model is a collection of probability
distributions.

A parametric model is a statistical model and a
parameterization that maps a space of labels to the statistical
model.

Under certain conditions, elements of the label space are
called parameters. These parameters index probability
distributions i.e., elements of the statistical model.

We will focus on parametric models where the goal is signal detec-

tion. This involves estimating a parameter from data and estimating

the variability of the parameter estimate. First, we consider the sig-

nal.
c©John Carew, 04/16/2003 – p.3/47



Hemodynamic Response Function

We assume that the BOLD signal x(t) is linked to a stimulus by a
convolution of the stimulus s(t) by a hemodynamic response
function (HRF) h(t):

x(t) =

∫

∞

0

h(u)s(t− u) du.

A common model for h is the difference of two gamma functions:
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Expected BOLD Signal

To determine the expected BOLD signal from a stimulus s(t), we
must first represent the stimulus.

s(ti) =

{

1 if stimulus/task at ti

0 otherwise
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Linear Regression Model

A common model for fMRI time series is a linear regression model
(e.g., Worsley and Friston, 1995).

y = Xβ + Kε (1)

y = (y1, . . . , yn)T is an n× 1 matrix of samples of the fMRI
signal

X is an n× p design matrix with columns that contain signals of
interest and nuisance signals

β is a p× 1 matrix of unknown parameters

K is an unknown matrix

ε ∼ N (0, σ2I)
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Fitting the Linear Model

A least squares estimator of β is given by

β̂ = (X′X)−1X′y. (2)

Then, the variance of the estimator is

var(β̂) = (X′X)−1X′ var(y) X(X′X)−1. (3)

If var(y) = σ2I, then (3) simplifies. If it takes some general form
(positive definite and symmetric), then the expression remains
rather complicated.
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Problems with Regression Model

Suppose we fit the linear model to an fMRI time series and find
autocorrelation in the residuals. What happens?

β̂ is OK since it only needs E[ε] = 0 to be unbiased

The variance seems suspect since we use the residuals to
estimate the variance,

Assuming ε ∼ N (0, σ2I) will lead to an incorrect estimate of
var(β̂).
Alternatively we can assume (or attempt to estimate from
data) a variance structure for ε. However if our estimate or
assumption is incorrect, we will still get a biased variance
estimate.

Biased variance estimates impact the inferential step in our
analysis–the, “Statistical Parametric Mapping.”
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Statistical Maps

A common statistical map for signal detection is a voxel-by-voxel
map of the test statistic under H0 : β = 0, i.e., no signal. As an
example: T > 5, finger tapping (Blue = right, Yellow = left).
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Back to Regression Problems

How can an incorrect variance estimate affect, for instance, the
SPM that was on the previous slide?

At each voxel, a test statistic, T is computed by

T =
β̂

√

var(β̂)
. (4)

Thus, if the estimated variance is too low, T will be too large.
The significance will be overstated, possibly leading to a false
positive.

Conversely, if the estimated variance is too high, T will be too
small. The significance will be understated. This will lead to a
loss of power to reject the null hypothesis when it is false.
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A Concrete Example

Let’s fit a linear model to an fMRI time series that presumably
contains a signal related to a task performed during the scan
session.
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Example: Expected Response

This is the expected response–or the signal we wish to detect in
our time series.
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Example: Model Fit

A fit of the signal (plus polynomial drift) to the time series shows,
visually, a strong signal component. The fit does show some
problems (e.g., wrong hemodynamic delay).
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Example: Summary of Fit

Estimate Std.Error t-value p-value

(Intercept) -34.006 4.658 -7.300 5.76e-11
signal 52.588 4.114 12.784 < 2e-16
poly(tind, 3)1 -12.391 40.135 -0.309 0.7581
poly(tind, 3)2 -102.628 40.638 -2.525 0.0131
poly(tind, 3)3 -28.310 40.121 -0.706 0.4820
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Example: Residuals

A plot of the residuals (observed values minus fitted values) shows
systematic components. This suggests correlated errors.
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Example: Detecting Correlated Errors

How can we detect correlated errors? One tool is the sample
autocovariance function (for lag k):

ck =
1

N

N−k
∑

t=1

(xt − x̄)(xt+k − x̄)

You may recognize the similarity between the sample autocovari-

ance and the sample covariance for realizations of two random vari-

ables. The sample autocovariance is the covariance between ob-

servations of a time series at a distance k.
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Example: Sample ACF

This plot shows significant correlations in the residuals. What is the
source of these correlations?
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Example: White Noise

Compare to 110 samples of a Gaussian random variable:
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Example: Periodogram

The periodogram (sometimes called power spectrum) is another
tool for investigating the correlation structure of a time series. It
conveys the same information as the ACF, but in a slightly different
way.

I(ω) =
1

N





{

N
∑

t=1

xt sin(ωt)

}2

+

{

N
∑

t=1

xt cos(ωt)

}2




Note: a commonly unknown fact is that the periodogram is not a

consistent estimator of the spectral density.
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Example: Residual Periodogram
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Example: Noise Periodogram

Compare to Gaussian noise:
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Example: Re-fit with AR(1)

The regression model was re-fit assuming and AR(1) noise
structure.

Value Std.Error t-value p-value
signal 41.427 6.971 5.943 <.0001

Compare this to the standard OLS assuming independent errors.

signal 52.588 4.114 12.784 <2e-16

Both the estimate and the standard error change. The main mes-

sage is that to falsely assume independent errors can dramatically

overstate the significance of the signal.
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Addressing the Variance Problem

Two general approaches are commonly used in the fMRI
community:

Temporal smoothing (Worsley and Friston, 1995): Attempt to
“condition” the correlation structure to some known form.

Pre-whitening (Bullmore et al., 1996): Fit the model under iid

error assumptions, model the correlation structure of the
residuals, whiten the raw data by removing the estimated
residual structure, and finally refit the model. If a good estimate
of the residual autocorrelations can be computed,
pre-whitening is BLUE.

It has been argued (e.g., Friston et al., 2000) that smoothing is
preferred over prewhitening.
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Smoothing Approach

Let S be a linear transformation. The matrix S is applied to the
linear model to give

Sy = SXβ + SKε. (5)

(Note: If K is known, the approach of whitening is to choose
S = K−1.) Now, a least squares estimator is

β̂ = (SX)+Sy. (6)

Let V = KKT be the unknown variance (prior to smoothing). With

smoothing, the assumed variance Va = SST ≈ SVST , the true

variance. We need to pick S in a way that will reduce the bias in the

variance estimates.
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How to Select S?

The bias as a function of S is difficult to directly minimize.

With this limitation, we must determine empirically if a given
smoother gives an acceptable level of bias.

An approach used in the fMRI community, e.g., SPM99, is to
use a kernel smoother with a fixed bandwidth comparable to
the HRF.

An alternative approach is to use an objective criterion to pick
the “best” smoother over a range of sensible parameters.
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The Smoothing Spline Approach

We fit a spline to each voxel time series and use the spline
smoothing matrix as S for fitting a smoothed linear model to the
voxel.

Spline model for yi:
yi = f(ti) + εi, (7)

where f is a smooth function, εi ∼ N (0, σ2), and ti for
i = 1, . . . , n are equally-spaced times when fMR images are
acquired.

References on the method: Green and Silverman (1994) is a
“gentle” introduction. The definitive reference is Wahba (1990)
Spline Models for Observational Data SIAM, Philadelphia.
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Fitting a Smoothing Spline

An estimator of f(ti) is obtained from

ˆf(ti) = arg min
f∈C2[t1,tn]

(

n
∑

i=1

(yi − f(ti))
2 + λ

∫ tn

t1

(f ′′(x))2 dx

)

. (8)

The unique solution is a natural cubic spline–a piecewise cubic poly-

nomial with “knots” at each sample point. When λ = ∞, f̂ is a linear

approximation. When λ = 0, i.e., no smoothing, f̂ interpolates the

yi with a piecewise cubic polynomial. The estimator is linear. See

Carew et al. (2003) for details on how to fit.
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Model Selection: Choosing λ by GCV

One method for selecting the optimal smoothing parameter is
generalized cross-validation (GCV) (Craven and Wahba, 1979).

Given λ, the GCV score is

V (λ) =
1

n
·

∑n

i=1(yi − ˆf(ti))
2

(1− n−1trA(λ))2
. (9)

Matrix A(λ) = Γ(I + λD)−1ΓT maps the data to their fitted
values.

The GCV score is asymptotically a predictive mean square
error criterion. This means that for large n, the λ that minimizes
the GCV score will give a spline estimate that minimizes the
mean square error between the estimate and the true,
unknown function.
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Bias of Variance Estimator

Given S computed with GCV-spline, the variance of a contrast of β̂

and the bias of the variance estimator can be computed with
equations given in Friston et al. (2000):

var(cT β̂) = σ2cT (SX)+SVST (SX)+Tc (10)

and

bias(S,V) =
var(cT β̂)− E[var(cT β̂)]

var(cT β̂)

= 1−
tr[LSVST ]cT (SX)+SVaS

T (SX)+Tc

tr[LSVaST ]cT (SX)+SVST (SX)+Tc
, (11)

where L = I − SX(SX)+ is the residual forming matrix and c is a

contrast vector for hypothesis testing of the components of β̂.c©John Carew, 04/16/2003 – p.29/47



Bias, Continued

An estimate of var(cT β̂) is obtained by replacing V with its
assumed value, Va, and σ2 with its estimate

σ̂2 =
(LSy)TLSy

tr(LVa)
, (12)

given in Worsley and Friston (1995).
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FMRI Experiment

1.5T GE-EPI, TR 2s, 64×64 pixels, 22 7mm coronal slices.

Four symmetric blocks of photic stimulation (30s on, 30s off).

Time series were analyzed with the smoothed linear model
where S ∈ {I, SPM− HRF,GCV− Spline}.
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Results from Real Data
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Results from Real Data
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GCV Score V (λ)
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GCV Score V (λ)
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Equivalent Kernels/Basis Functions
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Equivalent Kernels/Basis Functions
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Results from Real Data
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Results from Real Data
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Simulation Study

The goal is to create a data set with realistic, known error variance
structures to evaluate different smoothing strategies.

AR(8) model was fit to residuals of each voxel time series when
S = I to estimate K for each voxel.

The estimated K were used to induce correlations in samples
from a Gaussian density; a boxcar signal was added to
produce a simulated series.

The simulated series were analyzed with the three methods
used for the fMRI data.

Since the true variance structure is know (by construction) for
each voxel, the bias of the variance estimator can be directly
computed.
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Simulation Results–Bias
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Simulation Results–Variance

log10( var(cTβ) )

C
o
u
n
t

0

1000

2000

3000

�
�

 -1 4

No Smoothing

0

1000

2000

3000

SPM HRF

0

1000

2000

3000

GCV Spline

 0  1  2  3
c©John Carew, 04/16/2003 – p.42/47



Simulation Results Bias Images
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Summary of Results

GCV selects appropriate degrees of smoothing of fMRI time
series.

On average, more smoothing is selected with GCV than the
fixed SPM-HRF kernel.

The bias simulation show that the GCV-spline method is, on
average, unbiased.

Spatial maps show that voxels with positive bias are primarily
located in gray matter.
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Discussion

How might a fixed kernel smoother of greater bandwidth than
the SPM-HRF compare to GCV?

A more complete study might examine only gray matter voxels.

Could over-fitting of the variance structure with an AR(8) lead
to unrealistic simulated data?

How might this method perform for event-related fMRI designs?

To the scientist, how important is the need to make more valid
inferences?
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Conclusions

It is critical that the assumptions behind every statistical
procedure are checked—this can be challenging when fitting
10, 000+ models. See
www.sph.umich.edu/fni-stat/SPMd

Spline smoothing with GCV can be used to find an optimal
smoother for an fMRI time series of block design.

Empirically, we conclude that the GCV method selects the
degree of smoothing that leads to, on average, unbiased
variance estimates.

By selecting an appropriate smoother for each time series, a
substantial reduction in bias can be attained when compared to
assuming that all time series require the same degree of
smoothing.
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