DECLARATION OF CONFLICT OF INTEREST OR RELATIONSHIP

Speaker Name: Terry Oakes
I have no conflicts of interest to disclose with regard to the subject matter of this presentation.

Proronto!

Artifacts in FMRI

Terry Oakes
University of Wisconsin-Madison
Waisman Center Brain Imaging Lab

WISCONSIN

What I can tell you about:

- PET imaging
- Radionuclide production
- PET data analysis
- fMRI data analysis
- Coregistration
- Morphometry measures

Not so much:
MRI physics, pulse sequences, data acquisition

What is an Artifact?

To neuroscientists, this brain looks funny.

To Wisconsin Badger fans, the brain obscures the logo.

An artifact is anything that prevents you from seeing what you want to see.

What is the Signal?

Timeseries - filtered_func_data (face/voice)

What is the goal?

Big-picture goal

Artifact Sources

A Scientific Experiment

- Before
- measure twice, cut once
- During

Q look at your data. with your eyes.

- After

0 pre-processing: modeling and removing variance
D data analysis: modeling and discovering signal

The single biggest artifact source

Being Clever Ahead of TIme

- Before
- Learn a package

O provides an orderly introduction to analysis.

- Software programming skills
- File format conversion
- Experimental paradigm

Q event-related paradigms can isolate stimulus, HR

- Acquisition sequence

DCollect enough data
O multispectral anatomicals (T1, T2, PD, ...)
Ofield map
O physiological (cardiac, respiratory, skin conductance, eye tracking)
Destimator for HRF (e.g. motor response)

Post-hoc Corrections

- Some folks call it image processing...
- spatial registration
- field map correction
- slice time correction

D motion correction

- smoothing- spatial, temporal
- These corrections are ignorant of the experimental model.

EPI Dropout (susceptibility) artifact

phase dispersion => signal loss

EPI susceptibility artifact

clever ahead of time: optimize acquisition parameters

EPI registration - tread carefully

EPI registration: indirect approach

Typical acquisition sequence

- Goal: spatial alignment
- Hurdle: movement ~ time

Off to a bad start

Remove first 3-5 frames:
D delete from series or

- mark via GLM software
or
- assign to a unique condition

Field Map Correction

- The magnetic field is not uniform, leading to misplaced signal, since recording/reconstruction assumes a uniform gradient.
- $3 \mathrm{~T}=>$ worse
- Nonuniformities are object-dependent.
- Largest source of B_{0} inhomogeneity: air-tissue interfaces $=>$ susceptibility differences
- Different acquisition sequences may have different affect.

O EPI data (Gradient Echo) most affected (fMRI, DTI)
O Spin Echo affected little
O Luckily, this can be modeled and corrected...
O But, a seperate measurement is required.
O 2 scans with different TEs (e.g. 8, 11 msec), minimal distortion.

B-Field Distortion

The Cause: EPI Phase Error Accumulation

- For a linear field offset, phase error accumulates linearly.
- Cummulative phase errors cause a shift in position

Distortion (Fieldmap) Correction

- Strategy: Collect two gradient echo images at short but different echo times.
- Unwrap the phase.

Q Phase-difference proportional to the pixel-offset along the phase-encode axis.

- Resample the EPI image to correct for the offset.

$\mathrm{TE}=7 \mathrm{~ms}$

$\mathrm{TE}=10 \mathrm{~ms}$

Peter Jezzard and Stuart Clare, "Sources of distortion in functional MRI data", Human Brain Mapping, 8:80-85, 1995.

Field Map Correction

Field Map Correction

Magnitude of correction depends on the magnitude of the susceptibility artifact, which depends on the size of the sinuses.

OLarger in men than women.

- Larger in adults than children
- Although the magnitude of the correction is often small, it can reduce confounds between gender, age and susceptibility.

OIt cannot recover missing data from the dropout region.

Inhomogeneity Correction

- Increase gradient magnetic field strength.

Decrease echo time.

- Smaller pixels (better resolution).
- Phase encoding.
- Postprocessing.

Slice-time Correction

Make all slices appear to have been acquired at the same time.

A "reference" HRF should look the same in all slices.

More important for longer TR. Usually best prior to motion correction.

Motion Artifacts

- Sources
- Subject motion
- Peripheral movement (changes B-field)
- Respiration, cardiac
- Magnitude / Importance

Q a significant fraction of the fMRI signal!

- Model
- framewise 3D volumetric

O rigid body (translation, rotation)
Oignores intraframe motion
Q assumes only small movement

- Correlation between motion, stimulus

D correcting motion can attenuate activation signal
D motion estimates can be incorporated into GLM

Motion Correction: Magnitude

Motion Correction

Image realignment

$1 /$ scratch/TMRI_data/data/MRI_vis_stim_0000.img
$2 /$ scratch/MRI_data/data/MRI_vis_stim_0001.img
3 /scratch/MMRI_data/data/MRI__vis_stim_0002.img
4 /scratch/MRI_data/data/MRI_vis_stim_0003.img
5 /scratch/MRRI_data/data/MRI_vis_stim_0004.img
6 /scratch/MRRI_data/data/MRI_vis_stim_0005.img
/scratch/MMRI_data/data/MRI_vis_stim_0006.img
3 /scratch/MRRI_data/data/MMRI_vis_stim_0007.img
9 /scratch/MMRI_data/data/MRI_ vis_stim_0008.img
10 /scratch/TMRI_data/data/MRI_vis_stim_0009.img
$10 /$ scratch/MRI_data/data/MRI_vis_stim_0009.img
$1 /$ scratch/TMRI_data/data/TMRI_Vis_stim_0010.img
12 /scratch/TMRI_data/data/MRRI_vis_stim_0011.img
...........etc

Motion Correction: Subject Motion

t=later

between-plane: messy

Combining scan runs

Motion Artifact: Typical pattern

Single subject data
effect size

Motion Correlated with Stimulus

Motion Parameters:

How can we use this information for Good?

-Apply motion correction: reslice each 3D volume
${ }^{\prime \prime}$ standard" aproach
-loss of sensitivity if motion correlated with activation
OUse parameters as covariates in GLM
. may increase sensitivity

- more flexible data analysis
. small loss of degrees of freedom in GLM

Motion Parameters as GLM Covariates

-Block design:

. if motion correlated with stimulus, "standard" reslice best -Event-related design:
. motion parameters in GLM usually work well.

Motion Correction at Work

Smoothing - spatial

OIncrease S:N

- Objects similar in size to smoothing kernal emphasized
- matched filter theorem
- Manage imperfect registration
©Fulfill "Gaussian random field" assumption

Smoothing

Smoothing - when?

- EPI time series

O Spatial smoothing removes small (uninteresting) clusters
O Mild temporal smoothing beneficial:
a trend removal
4igh-pass filter
Q most versatile if left until GLM stage

- Parameter estimate (cluster) maps

O more versatile for analysis
Ochanges fitted results

Group-wise artifacts

O Multi-subject or 2cnd-level analysis
O subject-to-subject variance dominates
O most analysis assume:
D similar within-subject variance

- similar data acquisition, analysis

Software Recommendations

- fMRI - specific
- AFNI, FSL, SPM have largest market share, similar results
- Two- step procedure for selecting software:
- Find the smartest person in your lab.
- Use what they use.
- Scripting
b bash
- fast, easy, universal
- idiosyncratic, hard to distribute
- Python

Q versatile, extensible, good for distribution
O mostly universal, moderate learning curve
D Matlab, IDL
Q sed \& awk? You don't need my advice.

- Other handy tools:
- R

D fmristat

- NiPy
http:/ / www.r-project.org/
http:// www.math.mcgill.ca/ keith/fmristat/
http:// neuroimaging.scipy.org/

