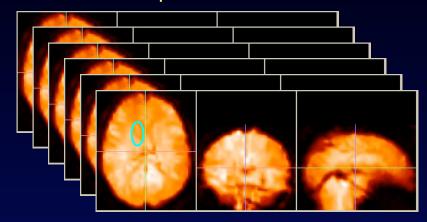
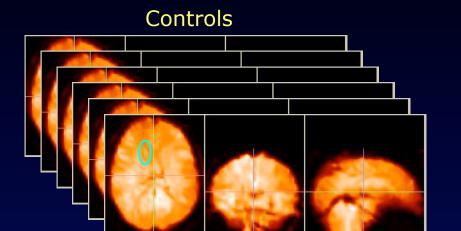
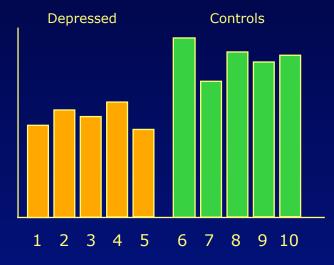
Functional Image Analysis with a General Linear Model (GLM).

a.k.a "spm" for fun and profit

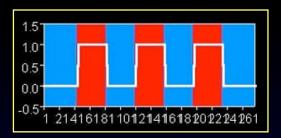


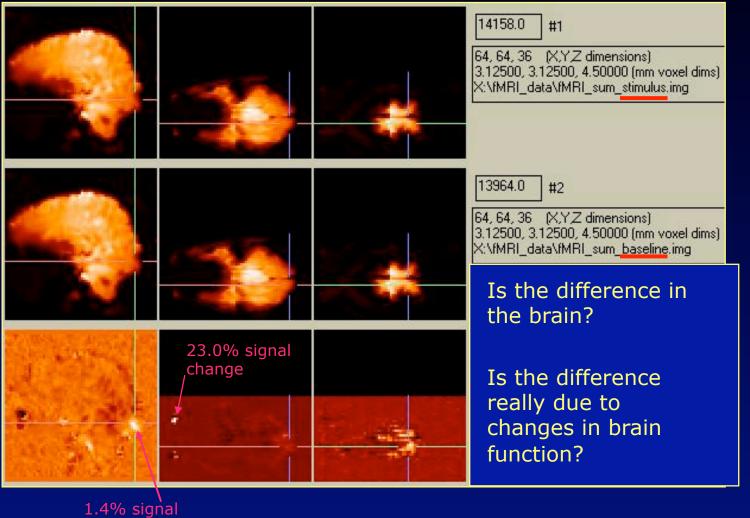

Image Analysis Goals


- 1) Does condition X yield a change in function?
- 2) Where do activations occur?
- 3) Where do interesting activations occur?
- 4) Are these activations significant?
- 5) How does an activation compare to others for the same condition? Other conditions? Within and across subjects?

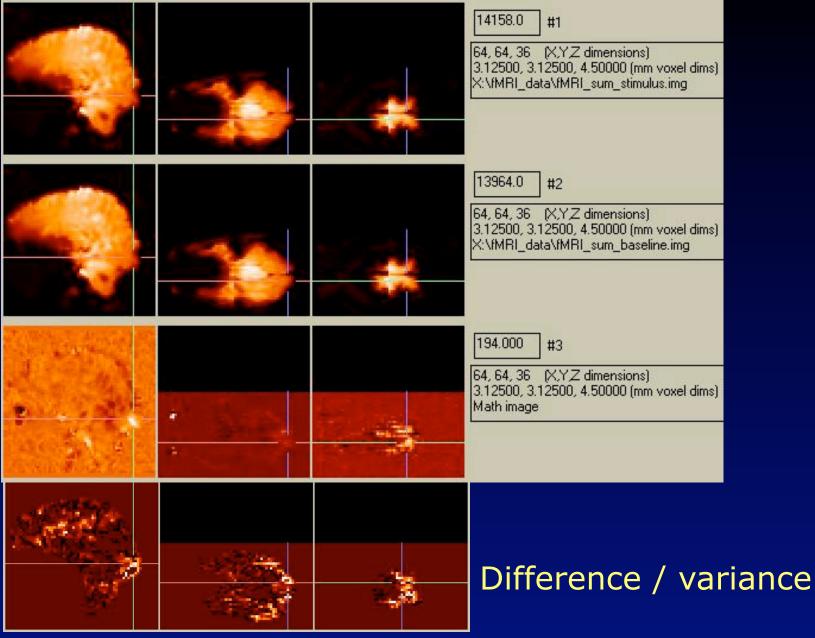
Region of Interest (ROI) Analysis

Depressed





Where to draw ROIs? How to assign variance?


Subtraction Image: finding differences

change

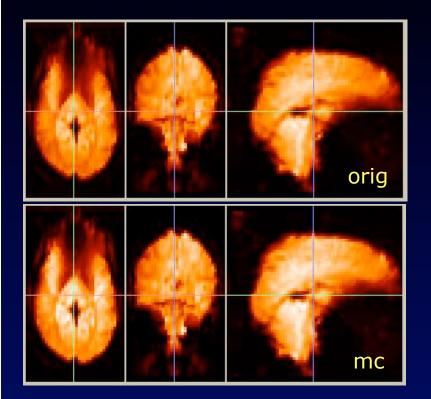
But is it Reliable?

Hypothesis Driven Research:

A systematic approach to proving hunches.

Most of the time, we find what we are looking for... even when we shouldn't.*

Science can also involve a discovery.


Preprocessing

Goals: Focus on structure(s) of interest Increase sensitivity, specificity

Motion correction
Slice-timing correction
Coregistration to a template
Mask the brain
Spatial, temporal smoothing
Normalize to a global average

Print	Clear	ColorMap 🖃	Effects	-	cut	move	resize	text	edit	2
-------	-------	------------	---------	---	-----	------	--------	------	------	---

Motion correction

Image realignment

 1
 /scratch/1MRI_data/data/1MRI_vis_stim_0000.img

 2
 /scratch/1MRI_data/data/1MRI_vis_stim_0001.img

 3
 /scratch/1MRI_data/data/1MRI_vis_stim_0002.img

 4
 /scratch/1MRI_data/data/1MRI_vis_stim_0003.img

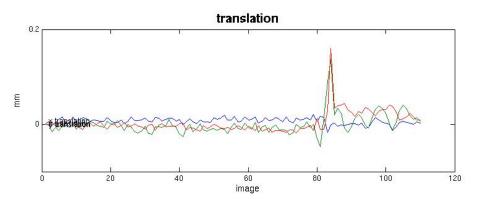
 5
 /scratch/1MRI_data/data/1MRI_vis_stim_0003.img

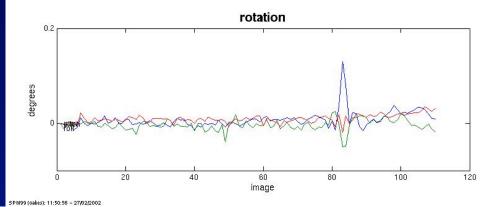
 6
 /scratch/1MRI_data/data/1MRI_vis_stim_0005.img

 7
 /scratch/1MRI_data/data/1MRI_vis_stim_0006.img

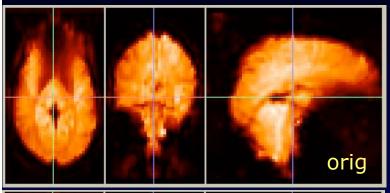
 8
 /scratch/1MRI_data/data/1MRI_vis_stim_0006.img

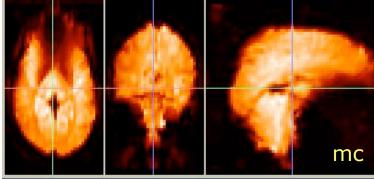
 9
 /scratch/1MRI_data/data/1MRI_vis_stim_0003.img

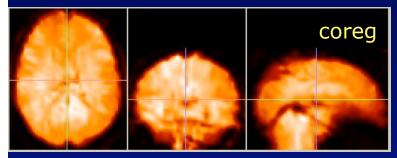

 10
 /scratch/1MRI_data/data/1MRI_vis_stim_0003.img


 11
 /scratch/1MRI_data/data/1MRI_vis_stim_0010.img

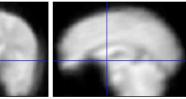
 12
 /scratch/1MRI_data/data/1MRI_vis_stim_0011.img

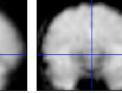

 12
 /scratch/1MRI_data/data/1MRI_vis_stim_0011.img

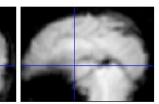

 12
 /scratch/1MRI_data/data/1MRI_vis_stim_0011.img

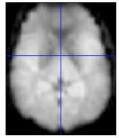


Coregistration to a template

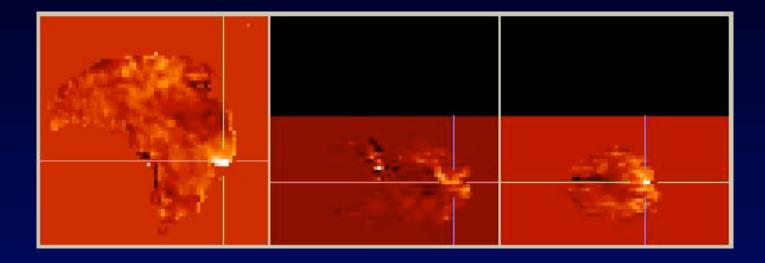

Print Clear ColorMap = Effects = cut move resize text edit


Spatial Normalisation


Image :/scratch/fMRI_data/data/meanfMRI_vis_stim_0000.img Parameters :/scratch/fMRI_data/data/meanfMRI_vis_stim_0000_sn3d


Linear {affine} component - image flipped X1 = -0.953*X -0.007*Y +0.039*Z +1.241 Y1 = 0.059*X +0.914*Y +0.035*Z -19.540 Z1 = 0.035*X -0.172*Y +0.941*Z -0.722

12 nonlinear iterations 7 x 8 x 7 basis functions



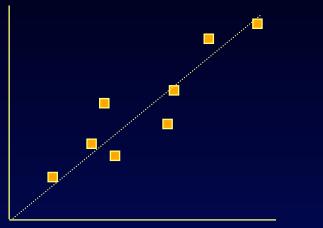
 (4) Gimp
 [SPM_analy...]
 [oakes@verv...]
] oakes@verv...

 N SPM99 (oak...
 N SPM99 (oak...
 N SPM99 (oak...

Masking

Threshold = 7000 (range = 0-25000)

SPM:


statistical parameteric map

A map showing the location, spatial extent, and relative magnitude of statistically significant activations to an experiment.

Software: AFNI BrainVoyager fmristat FSL SPM2 VoxBo

(fMRI) (fMRI) (fMRI, PET) (fMRI, PET) (fMRI, PET) (fMRI)

General Linear Model (GLM)

$$Y_{i} = (\beta * X_{i}) + C + E_{i}$$

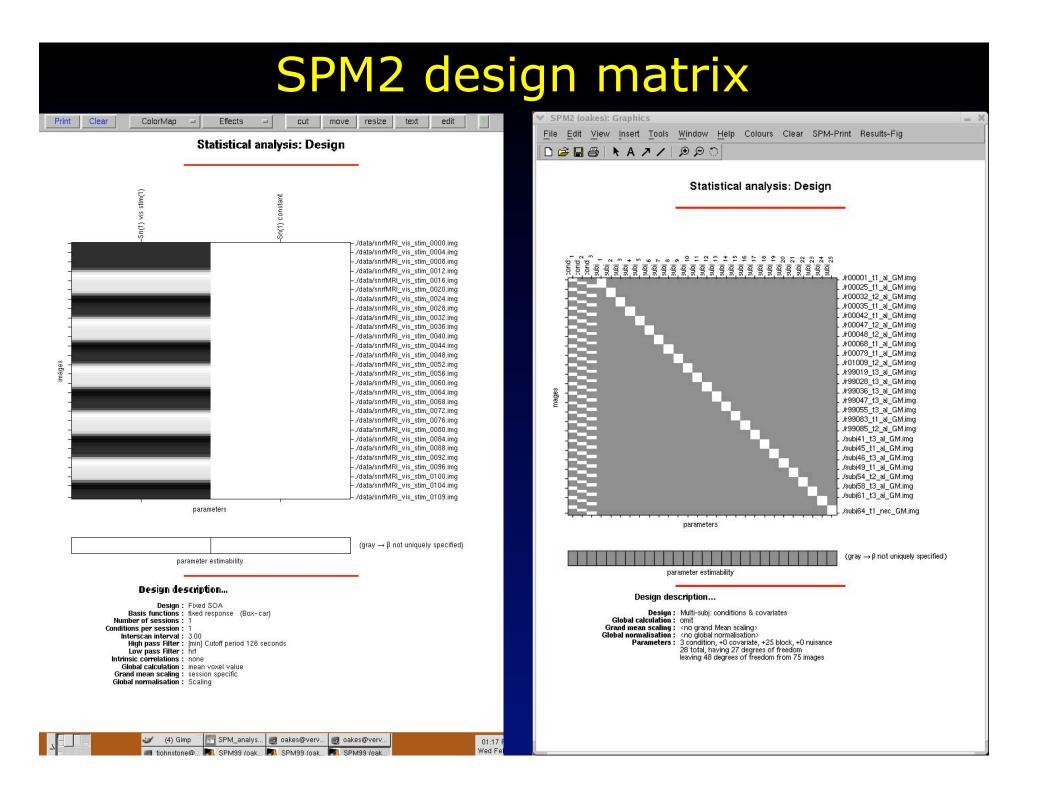
$$Effect$$

$$Uncertain$$

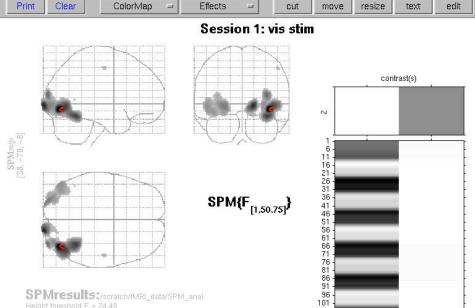
$$(error)$$

Measured value (image data)

Student's t-statistic: $t = \beta / E$


All statistics are calculated voxelwise.

Best GLM explanation: http://www.mrc-cbu.cam.ac.uk/Imaging/Common/spmstats.shtml


GLM parts

β-estimates (effect magnitude)
 contrast indicators
 con*** (t-stat) or ess*** (F-stat)
 ResMS (residual error)
 spmT*** or spmF***

 $Y_i = (\beta * X_i) + c + E_i$

Results example

Statistics: volume summary (p-values corrected for entire volume)

VIII 7 from	voxel-level				cluster-level		set-level			
x,y,z (mm	P uncorrected	$(Z_{_{\Xi}})$		F	P corrected	P uncorrected	κ _ε	P corrected	С	p
38 -78 -8	0.000	6.34)	(65.06	0.000		2085		0.000 4	
16 -100 -	0.000	6.04)	(57.02	0.000					
36 -54 -18	0.000	5.88)	(52.88	0.000					
-24 -96 -4	0.000	5.33)	(40.93	0.001		1009			
-50 -74 -4	0.000	5.09)	(36.46	0.002					
-42 -76 -10	0.000	5.04)	(35.62	0.002					
50 -14 52	0.000	4.59)	C	28.56	0.016		7			
-48 -56 6	0.000	4.30)	- (24.54	0.049		1			

110 -

2

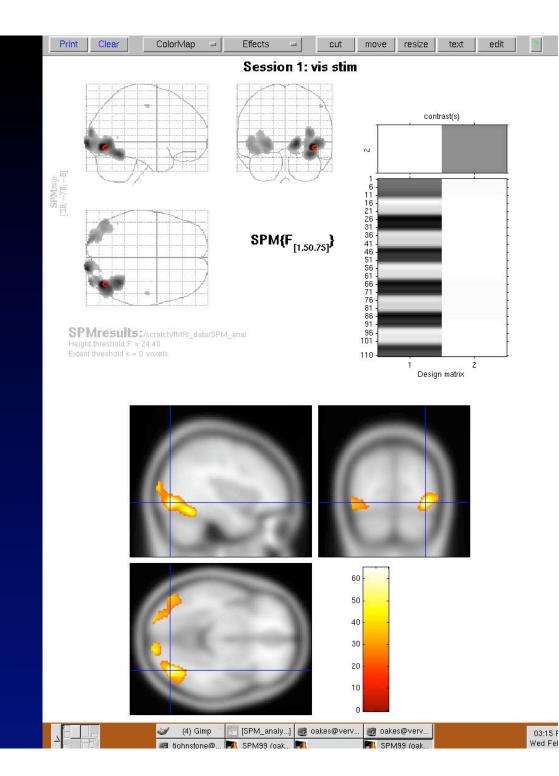
Design matrix


table shows at most local maxima > 8.0mm apart per cluster

Height three	shold: F = 24.48, p = 0.000 (0.050 corrected)
Extent thres	hold: k = 0 voxels, p = 1.000 (0.050 corrected)
Expected v	oxels per cluster, <k> = 27.750</k>
Expected n	umber of clusters, <c> = 0.05</c>

Degrees of freedom = [1.0, 50.8] Smoothness FWHM = 18.6 21.4 25.1 {mm} = 9.3 10.7 12.5 {voxels} Search volume: S = 1423664 mm*3 = 177958 voxels = 131.9 resels Voxel size: [2.0, 2.0, 2.0] mm (1 resel = 1248.03 voxels)

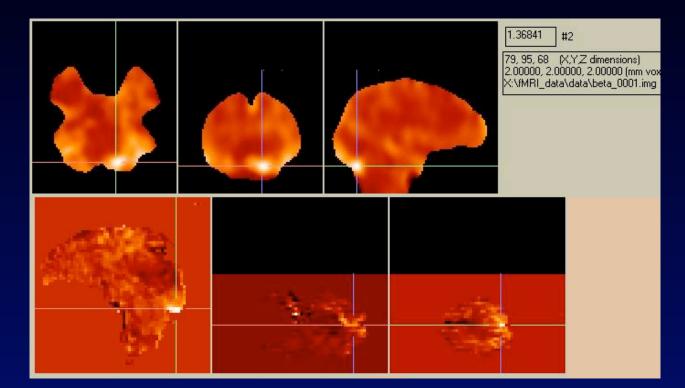
Plot of data and fit


📾 tiohnstone@... 🌅 SPM99 (oak..

1

03:16 F Wed Fel

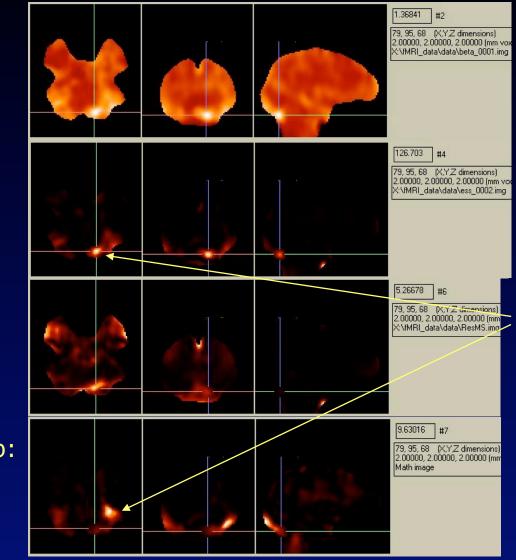
🛐 SPM99 (oak


Results: overlay

GLM effect size

Subtraction image

GLM components from SPM


 β image

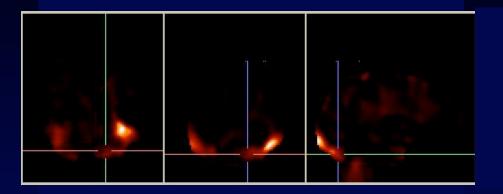
β image weighted with contrast

error estimate

t-statistic map:

weighted β error

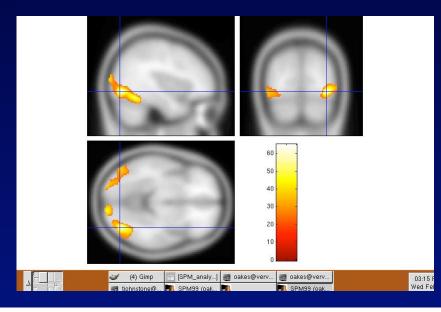
Why the difference?

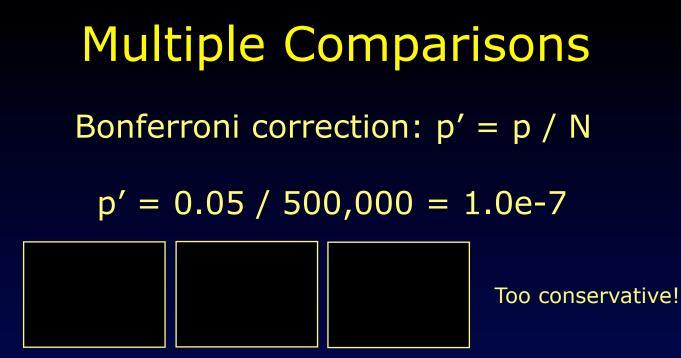

The spm shows where we are SURE there is a difference.

This is different than a subtraction image, which shows areas of large but possibly unreliable differences.

Thresholding

Localization


- Remove non-significant regions
- Compare cluster sizes


Statistical threshold: p < 0.05

Limit results to the most significant pixels (95% confidence level).

How do we get clusters from a continuous spm?

Approx. 500,000 pixels in the brain! => 25,000 significant pixels.

Most image data are not independent.

Challenge: find N which represents the true number of independent data points.

In SPM and fmristat, this is done via Random Field Theory and resolution elements (resels).

Sample GLM script with fmristat

```
hrf parameters = [5.4 5.2 10.8 7.35 0.35];
frametimes = (0:138) * 2;
slicetimes = zeros (1, 30);
onsets = [5 22 39 56 73 90 107 124 141 158 175 192 209 212 217 220 224 230 235 241 244 248 253 257];
duration = zeros(1,24);
height = ones(1, 24);
events = [ eventid', onsets', duration', height' ]
X cache = fmridesign( frametimes, slicetimes, events, [], hrf parameters )
imagesc( squeeze( X cache.X( :,1,1,:) ))
                                             % hrf go
imagesc( squeeze( X cache.X( :,2,1,:) ))
                                             % hrf nogo
imagesc( squeeze( X cache.X( :,1,2,:) ))
                                             %hfr deriv go
contrast = [1 0; % slow only
          0 1; % fast only
          1 1]; % both
which stats = [1 1 1 1 1 1 1 1];
[mtr df 016 p] = fmrilm( filename, output file base, X cache, contrast, [], which stats )
% saves workspace as fmristat.mat to task directory
save /study/fMRI tools/analysis/fmristat/016/mtr/fmristat.mat
% load workspace & view different stats images
load /study/fMRI tools/analysis/fmristat/016/mtr/fmristat.mat
t file = '/study/fMRI tools/analysis/fmristat/016/mtr/both Stat mag t.img';
view slices( t file, maskfile );
blur file = gauss blur ( t file, 8, '/study/fMRI tools/analysis/fmristat/016/mtr/both t')
sigT = stat threshold( 3.75*(64*64)*30*5, 64*64*30, 0, mtr df 016);
glass brain( t file, sigT, maskfile );
```

Web resources

http://brainimaging.waisman.wisc.edu/~oakes/spm/visual_stim_demo/fmri_visual_stim.html

http://www.mrc-cbu.cam.ac.uk/Imaging/Common/spmstats.shtml