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Motion correction of fMRI data is a widely used step prior to data

analysis. In this study, a comparison of the motion correction tools

provided by several leading fMRI analysis software packages was

performed, including AFNI, AIR, BrainVoyager, FSL, and SPM2.

Comparisons were performed using data from typical human studies as

well as phantom data. The identical reconstruction, preprocessing, and

analysis steps were used on every data set, except that motion

correction was performed using various configurations from each

software package. Each package was studied using default parameters,

as well as parameters optimized for speed and accuracy. Forty subjects

performed a Go/No-go task (an event-related design that investigates

inhibitory motor response) and an N-back task (a block-design

paradigm investigating working memory). The human data were

analyzed by extracting a set of general linear model (GLM)-derived

activation results and comparing the effect of motion correction on

thresholded activation cluster size and maximum t value. In addition, a

series of simulated phantom data sets were created with known

activation locations, magnitudes, and realistic motion.

Results from the phantom data indicate that AFNI and SPM2 yield the

most accurate motion estimation parameters, while AFNI’s interpola-

tion algorithm introduces the least smoothing. AFNI is also the fastest

of the packages tested. However, these advantages did not produce

noticeably better activation results in motion-corrected data from

typical human fMRI experiments. Although differences in performance

between packages were apparent in the human data, no single software

package produced dramatically better results than the others. The

‘‘accurate’’ parameters showed virtually no improvement in cluster t

values compared to the standard parameters. While the ‘‘fast’’

parameters did not result in a substantial increase in speed, they did

not degrade the cluster results very much either.

The phantom and human data indicate that motion correction can be a

valuable step in the data processing chain, yielding improvements of up

to 20% in the magnitude and up to 100% in the cluster size of detected

activations, but the choice of software package does not substantially

affect this improvement.
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Introduction

Head motion can have a profound effect on the activation signal

from fMRI studies (Hajnal et al., 1994; Thacker et al., 1999). Even

if motion is small compared to the fMRI voxel size, it can still

corrupt the raw BOLD images, invalidating the assumption that the

variation of intensity between image frames is due primarily to

changes in cerebral physiology (Friston et al., 1996). The need to

remove this confound from the data led to efforts to measure and

correct for head motion, usually with post hoc methods such as

coregistration of each fMRI volume to a reference volume

(Thacker et al., 1999; Jenkinson and Smith, 2001). The term

‘‘motion correction’’ usually refers to small (¨mm) intrasubject

corrections, which typically only correct for translation and

rotation either within or across scan runs of the same subject.

Most motion correction algorithms use a rigid-body fit which

assumes the head shape is constant between frames. An implicit

assumption is that motion occurring during the acquisition of a

given frame can be treated as if it occurred all at once, e.g., in the

small amount of time between frames. While this is usually not the

case, it is nevertheless a practical assumption which permits

motion correction to proceed with reasonable accuracy.

The development of automated image coregistration algorithms

enabled large data sets to be corrected for motion. Roger Woods’

automated image registration (AIR) method (Woods et al., 1992,

1993) used information taken from both the object and target

images to create a cost function, which quantified the amount of

overlapping information. An early comparison of the leading

coregistration methods of the day (Strother et al., 1994) determined

that a coregistration optimization scheme based on the measure-

ment of the similarity of the spatial distributions of voxel values, as

embodied by the AIR algorithm, was superior to other techniques.

This technique was subsequently applied to motion correction of

fMRI images (Jiang et al., 1995). A high-quality but time-

consuming interpolation such as the 3D sync-interpolation with

Hanning window was shown to be desirable for fMRI data (Ostuni

et al., 1997). A variety of software packages and algorithms are

currently available to correct fMRI time series for motion (Friston

et al., 1994, 1995; Cox, 1996; Cox and Jesmanowicz, 1999; Biswal

and Hyde, 1997; Studholme et al., 1997; Woods et al., 1998a,b;

Singh et al., 1998; Kim et al., 1999; Ciulla and Deek, 2002).

http://www.sciencedirect.com
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There is a relative paucity of comparisons of fMRI analysis

packages in general, although some comparisons of the coregistra-

tion components of various software tools have been undertaken.

West et al. (1997) compared twelve (12) brain coregistration

techniques, but fMRI was not one of the modalities examined.

Similarly, a more recent article (Hellier et al., 2003) compared 6

different types of coregistration algorithms, but used high-

resolution MRI images instead of typically lower-resolution

functional BOLD images. Koole et al. (1999) examined eight

different algorithms for coregistration of SPECT functional

images; the AIR package was the only one examined that is also

commonly used for fMRI, and AIR was determined to be overall

the fastest and most accurate. Since none of these works explicitly

addressed registration of typical fMRI-BOLD images, their

conclusions provide only modest guidance in selecting an fMRI

motion correction tool.

An examination of several fMRI analysis packages was

performed using what are now considered older versions of

currently available software. Gold et al. (1998) tested features

including motion correction from five packages (AFNI 2.01,

SPM96, Stimulate 5.0, MEDIMAX 2.01, and FIT) and

described three others (FIASCO, Yale, and MEDx 2.0). The

Gold et al. (1998) article is admittedly more descriptive than

analytic and does not contain ratings for accuracy of motion

correction, although the comments regarding usability are

informative.

Morgan et al. (2001) examined the efficacy of motion

correction of three packages (SPM99b, AFNI98, and AIR3.08).

This work featured an innovative computer-generated phantom

based on actual EPI data to create a known amount of movement

with simulated noise and local activations. The motion correction

was examined both in light of the accuracy compared to the

introduced movement, and also with respect to various indices of

activation detection as determined by yet another package,

Stimulate (Strupp, 1996). The results demonstrate that correcting

for motion between frames increases the specificity of activation

findings; furthermore, the contemporary versions of each software

package examined produced similar results both with respect to the

accuracy of motion correction as well as the ability to correctly

detect an activation signal in a phantom. Three different motion

correction approaches employed in a recent effective-connectivity

project (Gavrilescu et al., 2004) also yielded no substantial

difference in results.

A study examining fMRI tools (Ardekani et al., 2001) using

simulated data determined that the motion correction implemented

by SPM99 was slightly more accurate than AFNI, but that AFNI

was several times faster, and AFNI was also more robust in the

presence of noise. However, these authors concluded that AIR was

the least accurate of the four packages studied, which contrasts

with the results of Koole et al. This discrepancy emphasizes the

variability in algorithm performance depending on such factors as

the characteristics of the image data and the software parameters

selected, and it also underscores the difficulty in generalizing

evaluations of algorithms and analysis tools beyond the data sets

they examined. This is particularly true for simulated phantom

data, which may not capture the many subtle components present

in biologically derived data. An important question addressed in

the current work is how well various measures of algorithm

accuracy (usually obtained from phantom data) can predict the

relative performance of a given algorithm used with actual human

data.
In the present study, we compare five (5) software tools which

are in common use for motion correction of fMRI-BOLD data:

AFNI (Cox, 1996), AIR (Woods et al., 1992, 1993, 1998a,b),

BrainVoyager (Brain Innovations, Maastricht, The Netherlands),

FSL (Smith et al., 2001), and SPM2 (Friston et al., 1994, 1995).

(A sixth tool, VoxBo (Aguirre et al., 1997, 1998; Zarahn et al.,

1997), was also examined, but results are not included since

VoxBo’s motion correction algorithm is a direct port of an older

version of SPM96b and is about to be replaced.) Descriptions of

each of the packages used in this work are given in Table 1 and

are confined to issues relevant to motion correction. The

information on file format compatibility may become irrelevant

if the software authors adopt the proposed NIfTI file format

standard (see http://nifti.nimh.nih.gov/).

Experimental paradigms

Most fMRI paradigms can be categorized as either a block

design, where a single experimental condition is presented in

a block of time occupying several TRs followed by a similar

period of a control or alternate condition; or as an event-

related design (Dale and Buckner, 1997), where single events

of duration typically less than the TR are presented. Because

of their differing time scales and the influence of activation-

correlated motion, it is possible that motion correction will

vary in efficacy for block versus event-related experiments.

Both types of experimental paradigms were used in this

study.

Data sources

Data from 40 human subjects for both a block- and event-

related design were taken from the Wisconsin Imaging Tools

Evaluation Resource (WINTER), a data set acquired for the

express purpose of investigating methodological aspects of data

analysis. A simulation (phantom) study was also undertaken to

inform the results from the human study as well as to obtain

absolute measures of registration and interpolation accuracy. In

particular, the phantom data were used to obtain a data set with

a known interplay between motion and the activation signal

(see e.g., Freire and Mangin, 2001). The phantom and human

data agree on several points, allowing us to bridge results from

previous authors who used either phantom or human data but

not both. The data sets used in this work (human and

phantom) are being characterized in detail and will be made

available in the future to researchers for testing and benchmark

purposes.

Project goals

Our primary goal was to determine whether one motion

correction tool was better than others with regard to the detected

activations from a typical analysis using a general linear model

(GLM) approach, and the extent to which quantifiable measures

of algorithm performance influenced the relative GLM results. A

secondary goal was to determine the relative contribution of

motion correction toward improving activation detection for a

block design and for an event-related design. The scope of this

article is to compare motion correction through the criteria of the

effect on the subsequent GLM-derived t test maps, to quantify

the accuracy of the motion estimation and interpolation steps,

http://www.nifti.nimh.nih.gov
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Table 1

Comparison of characteristics for each software tool

Software Interface OS supported Source

code

available

File

format

Cost function Optimization

technique

Interpolation Additional

features

AFNI GUI,

command

line

Unix, Linux,

MacOSX,

Windows

(cygwin)

Yes Proprietary,

ANALYZE-7.5,

NIfTI

Weighted

least

squares

Iterative

gradient

descent

Fourier, also

trilinear, n-degree

polynomial

4-way 3D

shear matrix

factorization

of rotation

matrix for

speed

AIR Command line Unix, Linux,

Windows,

most others

Yes ANALYZE-7.5

(3D only)

Least squares

with intensity

rescaling

(and other

options)

Powell variant Scanline chirp-z

(Fourier variant),

several others

Brain

Voyager

GUI, some

scripting

Unix, Linux,

Windows,

MacOSX

No Proprietary,

ANALYZE-7.5

Least squares Levenberg–

Marquardt

or (if that fails)

gradient descent

Trilinear and sinc

FSL

McFLIRT

GUI,

command

line

Unix, Linux,

MacOSX,

Windows

(cygwin)

Yes ANALYZE-7.5,

NIfTI

Normalized

correlation

(with several

other options)

Multistart coarse

search followed

by two finer

searches.

Trilinear and sinc. Edge smoothing

to eliminate small

cost function

discontinuities.

SPM2 GUI, Matlab

command line,

Matlab scripting

Unix, Linux,

MacOSX,

Windows;

requires Matlab

Yes ANALYZE-7.5,

NIfTI

Least squares

approach,

Taylor expansion

to parameterize

image

Gauss–Newton 4th degree B-spline

(approximates a

windowed sinc

function)

Optimized

non-Matlab

programs

(*.mex files)

only exist for

some OS
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and to relate the individual software accuracy to GLM analysis

results.
Methods

Human studies

Forty subjects were recruited through local newspaper and

pinup advertisements. All subjects provided informed consent,

and all studies were performed in accordance with the policies of

the UW-Madison’s Human Subjects IRB. The goal was to recruit

a range of subjects who would be representative of the ‘‘normal’’

types of subjects recruited as controls from the population at

large.

Participants were screened by phone with an MRI-Compati-

bility Form, the Edinburgh Handedness Survey, and a Structured

Clinical Interview for DSM-IV Axis I Disorders (SCID). Prior to

the actual scanning session, subjects underwent a simulated scan in

a mock scanner to accustom them to the MRI scanner environment

and to train them in the performance of the different experimental

tasks. Data were acquired from February through July of 2003.

Subjects ranged in age from 18 to 50, with number and gender

balanced within each decade: 18–29: M(8), F(6); 30–39: M(6),

F(6); 40–50: M(8), F(6).

A working memory N-back task (Casey et al., 1998; Cohen et

al., 1997; Smith et al., 1996) (with 0, 1, and 2 back trials, 51 s per

block with 10 s of rest, 3 blocks of each condition) was used as a

multi-condition block-design experiment. A Go/No-go task (Gara-

van et al., 1999; Liddle et al., 2001) (random ITI between 1.5 and

3.5 s, 120 Go trials, 30 No-go trials) was used to provide an event-
related design. Both tasks required a response to stimuli through a

button-box, so motion that is correlated with the activation

paradigm is a distinct possibility.

All functional and anatomical brain images were acquired on a

GE-SIGNA 3.0-T MRI scanner with a high-speed EPI gradient.

Anatomical scans consisted of a high-resolution 3D T1-weighted

inversion recovery fast gradient echo image (inversion time = 600

ms, 256 � 256 in-plane resolution, 240 mm FOV, 124 � 1.1 mm

axial slices), a T1-weighted spin echo coplanar image with the

same slice position and orientation as the functional images (256 �
256 in-plane resolution, 240 mm FOV, 30 � 4 mm sagittal slices

with a 1-mm gap), and a T2-weighted fast spin echo image (256 �
256 in-plane resolution, 240 mm FOV, 81 � 2 mm sagittal slices).

Functional scans were acquired using a gradient echo EPI sequence

(64 � 64 in-plane resolution, 240 mm FOV, TR/TE/Flip = 2000

ms/30 ms/90-, 30 � 4 mm interleaved sagittal slices with a 1-mm

interslice gap; 252 whole brain images per scan run for the N-back

task, 203 whole brain images per scan run for the Go/No-go task).

The signal-to-noise ratio (SNR) of the image data averaged over all

subjects and over the entire brain volume was 130 T 50, with a

range of 80–250. This value includes regions of the brain with

substantial inhomogeneity (dropout) artifact so there is substantial

spatial variation.

Phantom simulations

A series of simulated fMRI data series (also known as

phantoms) were created in order to mimic activations with known

locations and magnitudes. To create the phantoms, AIR was used

to determine the motion parameters for a rigid-body (6-parameter)

motion correction for a sequence of 202 images (TR = 2 s) from
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Table 2

Phantom activation properties

Name Location FWHM (mm) Magnitude

Left visual cortex 1 12, 12, 23 8.0 0.01000

Left visual cortex 2 12, 12, 26 5.0 0.01000

Left PFLC 9, 43, 41 6.0 0.00500

Right PFLC 20, 43, 42 6.0 0.00500

Left hippocampus 8, 33, 28 6.0 0.00250

Left motor cortex 9, 33, 40 3.0 0.00375

Right motor cortex 19, 33, 41 3.0 0.00500

‘‘Location’’ refers to the 0-based location within the 3D array (dimensions =

[64, 64, 32] voxels) for the base EPI image oriented in the acquisition

direction (sagittal) with the superior part of the brain at the left and the

anterior part of the brain at the top of the displayed image volume.

‘‘FWHM’’ refers to the width of the Gaussian-shaped activation in each of

the three cardinal directions. ‘‘Magnitude’’ indicates the scaling factor for

each activation relative to the regional average value at each respective

location, e.g., 0.0100 indicates a cluster with a maximal pre-noise value 1%

larger than the base image.
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one of the human subjects, and the transformation parameters were

extracted from the resulting ‘‘*.air’’ files. A single EPI-based 3D

image volume from the middle of the sequence was selected as the

base image. A scriptable version of the AIR program ‘‘manualre-

slice’’ was used to create transform matrices for each of the 202

known motions, and the AIR program ‘‘reslice’’ was used with

AIR’s ‘‘scanline chirp-z’’ interpolation method (a Fourier variant)

to create a series of translated and rotated images with realistic

motion. The original motion parameters and the activation models

are shown in Fig. 1.

Before the addition of motion to each phantom series,

activations were added at specific locations in the original (pre-

motion) image. Seven (7) different activation clusters were added;

all activations were modeled as a 3-dimensional Gaussian

distribution with a specific magnitude and FWHM. The activation

properties are summarized in Table 2.

The activation magnitudes were modulated by a specified

activation function. Two different activation functions were used in

this study: (i) a block-design activation with 9 evenly spaced

blocks (10 TRs on, 10 TRs off) and no activation at the beginning

or end; and (ii) an event-related design with a spike-shaped

activation every 8 TRs. Both activation functions were convolved

with a synthetic hemodynamic response function.

Noise was added to each image volume after addition of the

activations. The noise was modeled as normally distributed about

the value for each voxel. The FWHM of the normal noise

distribution could be specified in order to model different image

SNR. In this study, two different SNR levels were modeled: (i)

SNR = 200 and (ii) SNR = 80. These capture the range of SNR

encountered in previous research using different scanners (1.5 T

and 3.0 T) in brain regions with both good and poor signal

coverage.

Several potentially influential sources of noise were not

modeled in this set of phantoms, including physiological noise,

non-linear warping that occurs when the internally distorted
Fig. 1. Phantom motion parameters. Parameters were taken from the motion correct

are in mm and the rotation parameters are in degrees. The root mean square (RMS

related and block activation models are shown in green at the bottom (arbitrary u
magnetic field is altered by rotation, the interaction of motion

and susceptibility artifacts (Wu et al., 1997), multiple intrascan

movements, and spin history effects (Friston et al., 1996).

Intraframe motion was modeled for an interleaved acquisition

scheme in some early phantoms but was found not to influence the

results, so this aspect was not pursued.

A set of 12 phantom time series were constructed with differing

parameters as summarized in Table 3. Three different levels of

motion were used: no motion (M0); standard motion as measured

from a human subject scan (M1); and the M1 translation and

rotation parameters multiplied by 3 (M3). These phantoms are

referred to as the ‘‘quantitative phantoms’’. Each package was used

to motion-correct the phantoms, and the resulting estimated motion

parameters were compared to the known motion values. (Brain-

Voyager was not included in quantitative comparisons of accuracy
ion of a representative human subject using AIR. The translation parameters

) is the square root of the sum of the square of all 6 parameters. The event-

nits).
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Table 3

Summary of phantom properties

Activation SNR Motion

Block 200 0

Block 200 1

Block 200 3

Block 80 0

Block 80 1

Block 80 3

Event 200 0

Event 200 1

Event 200 3

Event 80 0

Event 80 1

Event 80 3

‘‘Activation’’ refers to whether the activation paradigm was modeled as a

series of blocks or as a well-spaced event-related model. ‘‘SNR’’ refers to

the signal to noise ratio in the resulting image, which incorporates the basal

signal level and the normally distributed noise. ‘‘Motion’’ refers to a

multiplication factor used to increase or decrease the magnitude of the

motion parameters: ‘‘0’’ indicates no motion was added (these are the

control data); ‘‘1’’ indicates the motion parameters were used without

further modification; and ‘‘3’’ indicates that all motion parameters were

multiplied by 3, in order to simulate a large amount of motion.
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due to difficulty in converting motion parameters to a common

coordinate system.) The transforms required to translate the

parameters between packages are shown in detail in the online

Supplementary Data.

The interpolation accuracy of the software packages was

compared using a mostly zero-valued 3D image volume

containing nine (9) well-separated single points with values of

1000 (the ‘‘interpolation phantom’’). One point was at the

volume center and the other eight were placed near each corner

and 10 pixels in from the volume edges. Four of the software

packages (AFNI, AIR, FSL, SPM2) were used to reslice the

volume using x-, y-, and z-translations of 2 mm, and rotations

of 2- about the x-, y-, and z-axis. Two types of interpolation

algorithms were tested for each package: a trilinear type and a

sinc-like or Fourier-class algorithm. For SPM2, only a sinc-like

algorithm was tested.

Computer facilities

A set of 6 matched computers was used for all analysis (HP

model xw6000, 2.66 GHz Pentium IV dual processors, 3.0 Gbyte

RAM, 2 network cards, CD/RW, dual boot Windows2000 or

RedHat Linux 8.0+ patches). For time-sensitive tests, data were

copied to the local disk of a single computer.

Processing of human data prior to motion correction

MRI EPI-BOLD data were reconstructed using ‘‘epirecon’’, a

program made available by GE Medical Systems to certain

research facilities which use its MRI scanners. After reconstruc-

tion, functional data were converted to AFNI format and slice-time

corrected using the ‘‘to3d’’ and ‘‘3dTshift’’ programs of AFNI.

Image distortion was corrected using estimated B0 field maps to

shift image pixels along the phase encoding direction in the spatial

domain (Jezzard and Balaban, 1995; Hutton et al., 2002). Duplicate

copies of the corrected functional data were made in ANALYZE-

7.5 format for motion correction with packages other than AFNI.
The anatomical scans (T1, T2, coplanar) were reconstructed

directly on the MRI scanner.

Standard and other motion correction parameters

Each software package was used to motion-correct each of the

data sets using parameters that were determined to be the

‘‘standard’’ ones normally used for each package. The standard

parameters were taken as those advocated in an instruction manual,

an introductory course, or online discussion groups as default

parameters, if available; or, lacking these resources, through our

own experience with a reasonable balance between accuracy and

speed. The authors for each of the packages were then consulted,

and they verified that our standard parameters were either in fact

the default parameters or were quite similar. If default values were

not specified for one or more parameters for a particular package,

we attempted to use parameters similar to the other packages; for

instance, a sinc-type interpolation was used for all standard reslice

approaches. The authors of each of the packages were further

consulted for advice on motion correction parameters which were

optimized for (i) speed and (ii) accuracy. In some cases these were

similar or identical to the standard parameters. The parameters used

for each software package and for each of the three conditions

(standard, speed, and accuracy) are listed in Table 4. Unless

specified, all parameters in Table 4 were default parameters, or the

same as the standard configuration. Initial analysis of the phantom

data indicated that the interpolation schemes suggested by the

authors for the accurate parameters for AFNI (heptic, or seventh-

order polynomial interpolation) and AIR (scanline chirp within

plane, linear across planes, F�n 11_) yielded notably worse results

for cluster size and t values than the standard parameters. The

accurate parameters reported here are thus the same as the standard

parameters for these two packages. All combinations used a 6-

parameter (rigid body) model.

GLM analysis

The program ‘‘fmristat’’ (Worsley et al., 2002) was selected for

the general linear model (GLM) analysis because it has no motion

correction capabilities itself, and so was not one of the packages

considered in this work. The motion-corrected time series from all

software packages were treated identically after motion correction

was complete, and no further processing (such as spatial or

temporal filtering) was performed.

Using a two-stage GLM approach, analysis with fmristat

yielded a statistical parametric map of t values for each package.

In the first stage GLM analysis, data from each human subject

were individually modeled. Each condition was modeled with a

regressor formed by convolving a boxcar or spike function

representing stimulus ‘‘on’’ periods with an ideal hemodynamic

response function. Contrast maps were generated by subtracting

the parameter estimates for pairs of conditions. The contrast maps

were then registered to an MNI template (Montreal Neurological

Institute; Evans et al., 1992, 1994) with FLIRT software, using a

two-stage registration procedure. First, the coplanar T1 volume

was registered to the high-resolution T1 volume, using a 6-degree

of freedom affine (rigid body) transform. The high-resolution T1

volume was registered to the MNI template using a 12-degree of

freedom affine transform. These two transforms were then

combined and applied to the contrast maps to bring them into

MNI space.
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Table 4

Standard, fast, and accurate parameters for each software package

Standard Optimized for speed Optimized for accuracy

AFNI interpolation = Fourier; max.

number of iterations for

convergence = 19; x_thresh = 0.02;

rot_thresh = 0.03; delta = 0.7; single

pass registration

interpolation = cubic same as standard

AIR interpolation = scanline chirp;

cost function = least squares with

intensity rescaling; thresholds = 6000;

set flags ‘‘�j’’, ‘‘�q’’

interpolation = trilinear;

cost function = least squares;

convergence = ‘‘�c 10’’;

sampling density = ‘‘�s 81 9 3’’

same as standard

BrainVoyager interpolation = trilinear; every

other voxel in each dimension

(i.e., 12.5% of voxels), maximum

of 100 iterations

same as standard interpolation = sinc;

every voxel, threshold =

100 (of 255)

FSL cost = normcorr; bins = 256; dof = 6;

refvol = 0; scaling = 6.0; smooth = 1.0;

stages = 3

same as standard refvol = N/2 + 1; stages = 4;

final interpolation = sinc

SPM2 quality =.75; fwhm = 5; sep = 4;

interp = 4

quality = 0.5; fwhm = 7;

sep = 6; interp = 1

quality = 1.0; fwhm = 2;

sep = 2; interp = 5

Parameters not mentioned in fast and accurate categories are the same as standard parameters. For AFNI and AIR, the accurate parameters originally suggested

by the software authors were less accurate than the standard parameters, which were used instead throughout this work.

Table 5

Details of the six clusters examined in the event-related (Go/No-go) and

five clusters in the block design (N-back) data sets

Cluster location Design Cluster

volume (mm3)

Cluster

maximum t

Anterior cingulate event 8200 5.28

Left parietal event 4000 4.81

Right temporoparietal event 4800 4.41

Left inferior frontal event 4400 5.06

Right inferior frontal event 4000 6.06

Motor cortex event 5900 4.56

Left middle frontal block 3900 4.91

Left temporal block 4900 4.85

Right temporal block 3400 5.28

Right inferior frontal block 300 3.78

Left frontal (motion artifact)a block 3600 5.66

a Details for the motion artifact cluster are based on non-motion-corrected

data.
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For the human data, a second stage GLM analysis was

performed with fmristat to produce group t statistic maps for each

contrast. In preliminary analyses, it was noticed that the relative

ranking of results from the different packages changed slightly

depending on group size. This effect is most likely due to differing

accuracies between packages for certain individuals, so the overall

rankings changed depending on the constituent subjects. Rather

than rely on the results for a single group of individuals, a series of

subsets of the full data set were examined to avoid biasing the

results in favor of the motion correction program which happened

to yield the best t statistics for a particular group. From the original

full group of 40 subjects, 7 subjects with excessive motion (>4 mm

or 4-) were discarded. The remaining 33 subjects were evenly

divided into low- or medium-motion categories based on a median

split of the average root mean square (RMS) of the percent signal

difference between each frame and the first frame. Averaged over

each category, the RMS difference was as follows: low/event:

1.01%; medium/event: 1.31%; low/block: 1.34%; medium/block:

1.52%. Two distinct series of nested subgroups were then created

containing 8, 12, 16, 20, 24, and 33 subjects to avoid

idiosyncrasies in a given group biasing the results. Each subgroup

contained all of the subjects from the immediately smaller group

along with several additional subjects. For each subgroup, the

number of low- and medium-motion subjects was balanced, in

order to maintain continuity between group sizes with respect to

motion magnitude. For every package and set of parameters, a

GLM analysis was performed for each group size for both nested

series. The results from each group were averaged across the two

series.

Criteria for assessing accuracy of MC

Humans

For the human subject data, results were compiled for several

clusters for each paradigm. The clusters were selected by first

running the GLM analysis for the entire group of N = 33 subjects

using the non-motion-corrected data, and thresholding the resulting

t maps at t = 2.0 (corresponding to P < 0.054 uncorrected). The
non-motion-corrected data were used as the basis for comparison in

order to see the relative improvements of motion correction for

each software package, as well as to include both actual and

artifactual activation clusters in the comparison. Several clusters

were selected after visual inspection; 6 clusters were selected for

the event-related task and 5 were selected for the block design task

(see Table 5). Variety in the clusters was sought with respect to

location, cluster size and shape, superficiality, magnitude of

maximal t value, and likeliness of the cluster being a motion

artifact (Fig. 2 shows representative examples). For the event-

related task, clusters were identified bilaterally in temporoparietal

cortex, inferior frontal gyrus, anterior cingulate, and left motor

cortex. These brain regions have previously been found to make up

part of a network involved in manual response selection and

inhibition (e.g., Liddle et al., 2001). For the block design task,

clusters were identified bilaterally in the middle and inferior frontal

gyri, as well as bilateral middle and superior temporal gyri,

consistent with previous research on working memory tasks similar

to this one (Cohen et al., 1997). In addition, a left prefrontal cluster
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Fig. 2. Representative significant activation clusters for the block design (LMFG, LMTG) and the event-related design (ACC, Mtr, RTP). The clusters were

selected in order to obtain a variety of shapes, volumes, and locations.
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was identified as an obvious motion artifact, running in a narrow

strip around the left anterior cortical surface (see Fig. 4). A binary

mask was made for each selected cluster for N = 33 subjects.

Summary statistics for the motion-corrected clusters included

cluster location (centroid and maximum value position) in MNI

coordinates, mean, maximum, and standard deviation of t values

within each cluster, and the number of voxels within each cluster for

which the t value exceeded a significance of P = 0.01. The

parameters which were found to be most unique and informative

were the change in maximum t value across the whole cluster

relative to non-motion-corrected data, and the change in the number

of voxels exceeding P = 0.01 relative to non-motion-corrected data.
Phantoms

The phantom data set was used to examine the effect of motion

correction on subsequent maximal t values for GLM-derived activation

images. The maximal t values were tabulated for each of the seven (7)

activation clusters within each phantom. A recovery coefficient was

calculated by comparing each software tool’s clusters to a reference

data set with the same SNR but which had no added motion, and the

same activation as the cluster being compared to it (Eq. (1)).

R ¼ max tcluster �max tNoMCð Þ= max tref �max tNoMC

� �
ð1Þ

wheremax_tcluster is themaximum t value from an individual cluster,

max_tNoMC is the maximum t value for that cluster from the



ARTICLE IN PRESS
T.R. Oakes et al. / NeuroImage xx (2005) xxx–xxx8
corresponding non-motion-corrected phantom, and max_tref is the

maximum t value from that cluster from the unmoved phantom with

the same amount of noise. The recovery coefficient indicates the

improvement of the maximal cluster value for motion correction

relative to no motion correction, as a fraction of the total drop in t

value attributed to motion. R = 1 indicates full recovery of t values,

and 0 indicates no benefit from motion correction.

To evaluate the absolute motion estimation accuracy using the

quantitative phantoms, the transformmatrix output by each software

package was transformed to a standard coordinate system (see

Supplementary Data for details). For practical reasons the FLIRT

coordinate format was chosen, but any other could equally have been

chosen. The FLIRT program rmsdiff calculates the RMS difference

between two transforms applied to an 80-mm sphere located at the

center of the image (see Jenkinson et al., 2002). This program was

used to compare the estimated motion transform for each time point

as given by each software packagewith the knownmotion transform.

To assess interpolation accuracy, the average of the maximal

values for each of the nine isolated points in the resliced interpolation

phantom was used as an indicator, with values closest to the original

value indicating a more accurate interpolation algorithm.
Fig. 3. Increase in cluster size (top) and maximum t statistic (bottom) for motion-c

Data are averaged across clusters and group sizes. Error bars represent 95% confid

size of 632 mm3 and max t statistic of 4.03. Non-motion-corrected event-related
Criteria for assessing other aspects of software

To assess the speed of motion correction, 5 representative

subjects were selected, and motion correction was performed on

this group using each package. A single computer running Linux

(RedHat-8) was used for all computations except BrainVoyager, for

which the same computer was booted using the Windows2000

operating system. All data were first copied to that computer’s

local hard drive. For BrainVoyager only, the time to read the data

from disk was not included in the timing total. The times required

to motion-correct each subject were recorded for the two event-

related scan runs and the block-design run. For some packages,

separate times were obtained for alignment and reslicing, but since

these times were not available for all packages, only the aggregate

times are reported. An average time per single frame was

calculated, and these were then averaged over the block and

event-related data sets and all 5 subjects for each package.

To assess the ease of writing scripts for batch processing, the

principle users of each of the software tools within this work

compared each tool they were familiar with to other familiar tools,

and other users both within and outside of our laboratory were also
orrected data from the block design task (left) and event-related task (right).

ence intervals. Non-motion-corrected block design data had a mean cluster

data had a mean cluster size of 1640 mm3 and a max t statistic of 4.92.
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consulted. All contributors to this somewhat subjective assessment

had experience with at least two of the software tools, and none of

the contributors had any particularly close association with any of

the tools (i.e., the authors of the tools were not consulted for this

aspect). Although in some cases many comments were obtained,

we have attempted to restrict the observations to those that are

pertinent to the motion correction features of each package.
Results

Human data

Comparisons of the motion-corrected t values and cluster

sizes for each software tool relative to the corresponding non-

motion-corrected values are shown for the block-design and

event-related experiments (Fig. 3). Although the thresholded

cluster size and maximum t statistic results depended upon

group size for both the block and event-related designs, the

pattern of results across software tools and motion correction

settings (standard, fast, accurate) was the same for all group

sizes. Statistical F tests of the group � tool and group �
settings interactions were not significant (F tests <1.0 for these

interactions). Motion correction settings had no effect on results,

either as a main effect or in the interaction with software tool

(all F’s <1). Fig. 3 thus presents results averaged across group

size and software settings. For the block-design task, there was a

significant difference across software tools in thresholded cluster

size (F(4,90) = 2.52, P = 0.046) and in cluster maximum t

statistic (F(4,90) = 15.81, P < 0.0001).

All motion correction tools provided an increase in the cluster

maximum t statistic of about 0.8 in the block design experiment,
Fig. 4. Decrease in maximum t statistic (top right) and cluster size (bottom right) fo

Data are averaged across clusters and group sizes. Error bars represent 95% conf

statistic of 5.66 in non-motion-corrected data.
which represents an increase of 20%. All tools performed similarly,

although BrainVoyager increased t statistics by slightly less than

the other tools. For changes in thresholded cluster size, all tools

provided a mean increase in cluster size of about 100 voxels, which

represents more than a 100% increase in cluster size over non-

motion-corrected data. Once again, BrainVoyager provided a

slightly smaller gain, and AIR and SPM2 a slightly higher gain

in cluster size than the other tools.

Advantages of motion correction for the event-related design

were more modest than for the block design. On average, the

different tools provided an increase in the cluster maximum t

statistic of 0.2, representing a 5% increase over non-motion-

corrected data. Increases in thresholded cluster size were of the

order of 50 voxels, an increase of 25% relative to non-motion-

corrected data. There was a significant difference across software

tools in cluster maximum t statistic (F(4,90) = 3.52, P = 0.007)

and thresholded cluster size (F(4,90) = 3.75, P = 0.005). As with

the block-design task, BrainVoyager increased t statistics by

slightly less than the other tools. SPM2 and AIR provided slightly

higher gains in cluster size than the other tools.

The levels of change in cluster maximum t statistic due to

motion correction relative to the original maximal t values were

substantial for the block design, but not the event-related design.

Observed changes in cluster size were substantial for both tasks,

and large enough to have an impact on the statistical analysis, since

cluster size is an important component in most group level

statistical thresholding techniques. It is worth noting that the

FWHM of spatial correlation in motion-corrected data sets (a

measure of spatial smoothness) varied by less than 0.1 mm across

tools, and by less than 0.3 mm within each tool and across settings

(e.g., standard vs. fast); this implies that differences in maximal t

values were not due to differences in spatial smoothing.
r the motion artifact-related activation cluster in the block design task (left).

idence intervals. This artifactual cluster had a size of 3672 mm3 and max t
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Fig. 5. Recovery in maximum t statistic for motion-corrected data from the block design phantom (left) and the event-related design phantom (right). Data are

averaged across clusters. Error bars represent 95% confidence intervals.
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A false activation attributed to a motion artifact was analyzed as

above. The cluster was located in the left prefrontal region (see Fig.

4). All packages reduced this artifactual effect, although with the

BrainVoyager motion correction some residual artifact remained at

the suprathreshold level.

Phantom GLM data

For the simulated phantom data, more distinct differences than

in the human data were found between motion correction tools.

The ability of each package to recover cluster maximum t statistics

by motion correction is demonstrated in Fig. 5, which shows the
Fig. 6. Motion estimation accuracy. The absolute value of the mean difference o

plotted for each time frame. The FSL ‘‘fast’’ parameters and the AIR and AF

corresponding standard ones.
proportion of the drop in maximum t statistic due to motion that is

recovered after motion correction (see Eq. 1). No significant

interaction was found between software tool and effect of noise

level or motion level, so the results in Fig. 5 are averaged over

these factors. For the block design, all tools led to improvement

over non-motion-corrected data. A significant effect of software

tool on recovered maximum t statistic (F(4,360) = 16.83, P <

0.0001) was due to greater recovery for AFNI, and lower recovery

for BrainVoyager and FSL. Results for event-related phantom data

were similar, with AFNI showing the greatest t statistic recovery,

and FSL and BrainVoyager the least (test for main effect of

software tool: F(4,360) = 15.51, P < 0.0001).
f the calculated motion correction parameters (see Methods section G.2) is

NI ‘‘accurate’’ parameters are not shown since they are identical to the
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Fig. 8. Comparison of speed of motion correction. The average time (in

seconds) per 3D frame is shown for each software package for the fast,

standard, and accurate parameters. The numbers above the bars indicate the

average times. The values for FSL and SPM2 for the accurate parameters

exceed the range of the plot.
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There was an interaction of software tool and motion correction

settings for both the block design (F(8,360) = 2.31, P = 0.02) and

event-related design (F(8,360) = 2.59, P = 0.009) phantoms. This

effect was due to maximum t statistic recovery being worse with

the fast settings for AIR and AFNI. Each of the software packages

yielded nearly identical GLM results between the standard and

accurate parameters.

Estimation accuracy

The motion estimation accuracy for the phantom data is shown

in Fig. 6. The most accurate results were achieved by AFNI,

followed by SPM2. The accuracy of AIR, while still acceptable

(less than 10% of a voxel dimension), was the poorest. The

accuracy of AIR was affected very little by using either the fast or

accurate parameters, while for FSL, the accurate parameters did

indeed improve the accuracy by approximately 30%. Interestingly,

for both AFNI and SPM2, the standard parameters were the most

accurate.

Interpolation accuracy

The interpolation results indicate that the sinc-like interpolation

algorithms are significantly more accurate and introduce less

smoothing than trilinear-type algorithms (Fig. 7), since the sinc-

like algorithms yield maximal values closer to the original starting

value. AIR, FSL, and SPM2 are all quite similar within each

algorithm type, while AFNI performed noticeably better for both

types.

Speed comparison

Each of the software packages was operated using standard

(default) parameters, and then using parameters optimized for

speed and accuracy. For the standard parameters, the average

times (in seconds) per 3D image were as follows: AFNI: 0.11;

AIR: 0.36; BrainVoyager: 0.26; FSL: 1.93; SPM2: 1.35 (see Fig.

8). AFNI was at least twice as fast as any other package, with
Fig. 7. Interpolation comparison using a resliced volume with isolated

points. The average of the maximal value of each of the nine points was

calculated. The starting value (1000.0) of the points was scaled to 1.0 in this

plot. Values closer to 1.0 indicate less smoothing by the interpolation

algorithm. A trilinear interpolation was not performed for SPM2.
AIR and BrainVoyager ranked next. For the accurate parameters

FSL and SPM2 yielded extremely long times (off of the chart in

Fig. 8). However, the times for the accurate parameters are not

very important, since little or no improvement in measured

accuracy or cluster t value was actually derived from using these

parameters.

Usability

During the use of each of the packages in this work, comments

were recorded about specific usability features such as the learning

curve, file formats, ease of writing scripts for batch mode, and data

display features for checking the motion parameters. Although the

learning curve may be steep for several of the packages, there are

very helpful courses available from several of the software authors

for their packages, as well as a variety of excellent tutorials and

manuals. As mentioned previously, most of the comments about

file format issues will be obviated if each of the software tools

supports the proposed NIfTI file format (see http://nifti.nimh.nih.

gov/) as either a primary or secondary format. Unless specifically

mentioned, each tool was able to provide an adequate motion

correction for all data sets.

AFNI

AFNI has both command line programs and an extensive

interactive GUI with which to analyze and examine data. All

programs are easily integrated with any scripting language or

environment. Many of the command line programs (including the

motion correction program, ‘‘3dvolreg’’) are also included as AFNI

plugins, with a graphic user interface. ‘‘3dvolreg’’ has options to

save the motion estimates in text format, making it easy to graph

motion estimates against time, or to include motion correction

estimates as regressors in subsequent first-level GLM analysis. The

learning curve for AFNI can be steep, since there is a large array of

options and programs, and many of the handy shortcuts are not

immediately apparent. Relatively few processing steps are hidden

from the user or invoked automatically, but conversely the user

must take care to specifically include all of the desired analysis

components.

http://www.nifti.nimh.nih.gov
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AIR

AIR has only a rudimentary GUI interface and display

capability and was designed from the beginning to be incorporated

into scripts, which is easy to do. It is not trivial to obtain the motion

parameters, which are stored in a series of non-text motion

parameter files (so-called ‘‘*.air’’ files). A program to sequentially

extract and convert the transform matrix from each file must be

created independently by the user. Other items unaddressed by AIR

include the following: (i) the lack of integrated display programs;

(ii) the necessity to match the compiled version of AIR with the

data type and range; (iii) lack of support for floating-point data; and

(iv) no support for 4D file format. Nevertheless, learning to use

AIR is relatively easy, and it has proven to be a robust tool.

BrainVoyager (BV)

BrainVoyager is relatively easy to use on its own, although

issues related to file format and a rigid directory structure make it

more difficult to incorporate into a processing pipeline. Copies of

the original data files are required to be located in the directory

where it will create its ‘‘fmr project’’ file. Thus, a script must first

copy the input files to the BV working directory, perform all the

BV work, and finally delete these files. In the latest version, BV

introduces the ability to write data into the ANALYZE-7.5 format

for utilization by other software. There is a difference in the

availability of parameters between the interactive menus and a

scripted analysis, so not all motion correction parameters can be

scripted. For instance, even though motion correction can be

referenced to any volume when run interactively, scripting only

allows the default correction to the first volume. The voxel

intensity threshold for motion correction is also not scriptable.

However, the BV programmers are generally quite accommodating

to requests for adding features such as these. Motion corrections on

a few of the data sets (5 of 120) could not be completed due to

errors in the algorithm, specifically problems with the covariance

matrix. No combination of parameters could be found which

permitted motion correction for these five data sets.

FSL

FSL has both command line programs and GUI interfaces for

most analysis operations, although not all command options are

available through the GUI. When running a command from the

GUI, the equivalent command line is output to the terminal,

providing a basis for subsequent command line use. When carried

out within the FSL fMRI analysis tool FEAT, motion correction

estimates are output in easy to read HTML format. Text files of

motion estimates and transform matrices are also easily generated.

FSL includes scripts to facilitate the use of AFNI’s display

capabilities with FSL-generated output.

SPM2

The choice of Matlab as the environment for SPM2 has good

and bad points, and several of the usability features stem from this.

It is difficult to incorporate SPM2 procedures into a larger non-

Matlab-based script, but once inside Matlab there are a variety of

scripting options. The level of skill required to write scripts for

motion correction is comparable to most other software tools.

Although SPM2 can read a 4D ANALYZE-7.5 file, SPM2 must be

launched from a directory that contains a 4D file, and the ability to

read a 4D file must be explicitly requested. The motion correction

parameters are saved in a file in the output directory and can be

easily incorporated as regressors in a subsequent GLM analysis.
Discussion

The human as well as the phantom data indicate a substantial

benefit to a GLM analysis from motion correction. The human

data examined realistic changes in cluster size and t statistics and

the ability to remove a motion-induced artifactual activation. All

packages did an acceptable job and no single package emerged

as the clear-cut leader, although BrainVoyager did not perform

quite as well as the others. For the phantom data, BrainVoyager

and FSL did not achieve the same level of registration accuracy

as the others, as indicated by increased t statistic values.

However, overall differences between packages are relatively

small.

For the human data, a larger benefit of motion correction was

seen for the block-design data compared to the event-related

design. This difference may be due to the greater temporal

match of brain hemodynamics related to activation between a

block design and subject motion. Task-correlated motion is likely

to be more of a problem in block designs than rapid event-

related designs, since in the latter case task-correlated motion

unfolds at a more rapid pace than the relatively sluggish

hemodynamic response (Birn et al., 1999; Field et al., 2000).

Thus, in block designs motion correction is likely to be

particularly important.

The results from human data and phantom data were very

similar, although there were greater performance differences

between software packages for the phantom data than for the

human data. The results from the human data can be regarded as

more representative of realistic data analysis scenarios, in part

because a large number of different motion sequences were

present in the human data, and also because several known

sources of noise were not modeled by the phantom. The

phantom’s model for noise is likely inadequate to capture the

complexity of actual human data, since the phantom model did

not include physiological noise (breathing, blood pulsatile

motion, etc.), spin history effects, of the effect of motion on

magnetic field distortion. Future work using this or a similar

phantom incorporating additional noise elements into the model is

likely to change the magnitude of the t value recovery and

registration accuracy results, and perhaps also the relative

performance ranking of the various packages.

Somewhat disappointingly, there was virtually no improve-

ment in the t values or cluster sizes when the motion correction

parameters were optimized for accuracy (Fig. 5), although the

accurate parameters were more time consuming for all software

tools (Fig. 8), with a 10-fold or more increase in processing time

for some tools. A variety of parameters were changed in an

attempt to increase accuracy, with most involving an increased

number of iterations and/or a more stringent convergence criteria

required of the cost function (see Table 4). BrainVoyager and

FSL also attempted a more sophisticated interpolation scheme.

Freire et al. (2002) point out that some types of cost functions

may be more robust than others. However, changing the available

parameters for the cost functions had relatively little effect. All of

the tools examined in this work use a variant of optimizing an

intensity-based cost function at several sampling density levels.

As discussed by Jenkinson et al. (2002), this optimization

strategy is prone to being trapped in a local minimum, so the

implementation is arguably one of the most important factors in

motion estimate accuracy. The Powell variant used by AIR is

insensitive to changes in available parameters and seems unable
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to avoid the same local minima, as AIR arrived at the same result

regardless of the parameters. FSL has perhaps the most elaborate

optimization approach but this did not translate into better

accuracy. In general, increased estimation accuracy in other tools

did not lead to improved t values or cluster size in the human

data.

Given the range of results for motion estimation accuracy (Fig.

6) and interpolation accuracy (Fig. 7) from the phantom data, it was

somewhat surprising that a larger difference between packages did

not emerge in the human data. For example, even though the

reported estimation accuracy for AIR is a factor of 10 or more less

accurate than AFNI or SPM2, the actual performance of AIR for the

phantom and human GLM results compared quite favorably. The

limited resolution of fMRI data may constrain the gains that can be

made by sub-voxel improvements in motion estimation. Another

limitation is the assumption by all packages of rigid body motion:

once the first-order effect of average interframe motion is detected

and corrected, the remaining intraframe motion and other non-

modeled effects may be similar for all packages and contribute a

baseline variance to the GLM analysis that limits further gains. A

more important factor is that the variance introduced into a group-

level GLM analysis by intersubject differences in brain anatomy

and function may overwhelm any small gains made by a more

accurate motion correction algorithm. In this study, there was no

spatial smoothing of individual or group data. In the majority of

studies where data are smoothed, subtle differences in aspects of

motion correction such as estimation accuracy and interpolation

fidelity would have an even smaller impact. Once an acceptable

motion correction is achieved, further minor methodological tweaks

do little to improve the results in groupwise statistical analysis.

It should be reiterated that the human subjects involved in this

work were considered to be ‘‘normal’’, i.e., the population from

which they were drawn typically contributes the control sample for

many experiments. Different types of subject groups can be

expected to have different intrascan motion properties (Seto et al.,

2001), which could in turn lead to different results for motion

correction comparisons. For example, it is possible that a motion

correction technique that is optimal for typical small intrasession

movements might be less robust to larger movements or intersession

head position differences than a more generally applicable registra-

tion technique. For large intersession differences, some of the

motion correction tools may be inappropriate due to a limited search

space.

Parameters optimized for speed did not appreciably speed up

the operation, and this approach yielded a decline in the t values

and cluster sizes for AIR and AFNI. Given this, it would be

imprudent to use the fast parameters, since they are likely to be

less robust over a wider variety of subject populations and for

larger movements.

AFNI, which was clearly the fastest of the motion correction

tools, owes its fast performance time to a 3D implementation based

on the work of Paeth (1986) that provides the basis for obtaining

equivalent rotations using 1D shear movements, which are much

more computationally efficient than 2D or 3D rotations. In essence,

motion correction algorithms iteratively reslice an image volume

using a series of translations/rotations and compare each result to a

target file. Since the vast majority of the algorithm is typically

spent on the reslice operation, improvements to this algorithm can

be expected to have the greatest impact on speed.

Based on the results of this paper, general recommendations

for motion correction parameters include (i) an optimization
algorithm that avoids local minima and performs enough

iterations to assure a good convergence; and (ii) a higher-quality

interpolation (e.g., sinc-like) for motion estimation as well as

final reslicing. These may seem obvious but bear mention, since

in the two packages where fast parameters yielded decreased t

values (AFNI and AIR), a trilinear interpolation was used and the

convergence criteria were weakened. It is worth noting that

AFNI, which was found to be the most accurate, uses the least

distorting interpolation scheme and furthermore uses this scheme

for the entire optimization sequence. It is also worth pointing out

that the increased spatial smoothing associated with trilinear

interpolation did not improve the GLM results; in fact,

interpolation algorithms with less smoothing (e.g., sinc-like)

yielded higher t values and larger cluster sizes than trilinear

interpolations. Conversely the minimal smoothing characteristics

of AFNI’s interpolation did not translate to correspondingly

higher t values compared to other sinc-like interpolations. This

perhaps reflects a practical limit on the impact of improved

interpolation algorithms, which can depend on the SNR and

spatial smoothness of the data.

In terms of ease of use, motion correction was straightforward

to use for all packages. Writing batch scripts was also relatively

easy for all packages, although the use of proprietary software

environments or file formats can be a hurdle to combining several

programs into an analysis pipeline. Important factors which

facilitate use include clear instructions, stand-alone command line

programs callable from any scripting or programming language,

and a flexible and open file format.
Conclusion

This work was inspired by the hypothesis that the choice of

motion correction software should be based on identifiable differ-

ences in performance, and not on what software the person at the

neighboring desk was using when a researcher started learning to

perform motion correction. However, the data presented in this

work indicate that quantifiable differences in algorithm perform-

ance (e.g., registration accuracy, interpolation fidelity) do not

necessarily predict differences in GLM analysis results. The effect

of motion correction on GLM results is quite similar between

software tools, so this criterion is relatively unimportant in

choosing a software tool for motion correction. Other factors, such

as processing speed, ease of use, and integration with other fMRI

processing software, can be used to guide the selection. In the end,

selecting a software package that is well supported locally may be

the most compelling reason for choosing a particular motion

correction software tool.
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Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.neuroimage.2005.05.058.
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