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Introduction
We present a novel computational framework
for characterizing white matter (WM) structural
connectivity. We do not use diffusion tensor
imaging (DTI) but only T1-weighted magnetic
resonance imaging (MRI). Structural connectiv-
ity via MRI has been proposed using cortical
thickness before [1]. We propose to use the
Jacobian determinant (JD) obtained from the
tensor-based morphometry (TBM) [2]. By cor-
relating JD in TBM, we can build a connectivity
matrix based on the local volume.

The primary advantage of the proposed
method is that it does not require DTI. Another
advantage is that it uses JD that is defined over
the whole brain including WM unlike cortical
thickness.

The proposed framework is applied to the
brain networks of the children who experi-
enced early maltreatment and had been post-
institutionalized in orphanages (PI; n=32) and
age matched normal control subjects (NC;
n=33).
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a. Jacobian determinant map
T1-weighted MRIs were collected using a 3T GE
SIGNA scanner. Symmetric diffeomorphic image
normalization was performed using Advanced Nor-
malization Tools (ANTS) [3]. JD is computed as the
determinant of the gradient matrix of inverse defor-
mation field. We uniformly sampled 12480 voxels as
possible nodes at every 3mm.

b. Partial correlation
Let z = (1, age, gender, brain volume) be the covari-
ate vector. We modeled JD on the i-th node as

Ji = zλi + εi (1)

where λi is the unknown parameter vector and εi is
the zero-mean Gaussian noise. The residual of the
fit is given by ri = Ji − zbλi, where bλi are the least-
squares estimation. The partial correlation ρij be-
tween Ji and Jj is simply estimated by the Pearson
correlation between the residuals ri and rj .

c. Connectivity map
Between 12480 nodes, we link two nodes (1) if the
partial correlation of the JDs is statistically significant
using false discovery rate (FDR) with q=0.01 and (2)
if the distance (proximity) between the nodes is suf-
ficiently small.

We define the adjacency matrix A = (aij) as

aij =


1 if zij ≥ s and dij ≤ g
0 otherwise , (2)

where zij is the Fisher transform of the partial cor-
relation between the node i and j, s is the given
FDR threshold, dij is the Euclidian distance between
the nodes and g is a given proximity. We fixed g=27
mm as more than 90% of the thresholded edges are
shorter than that.

d. ε-neighbor simplification
To simplify extremely complex graphs without distort-
ing underlying topology, we adopted the ε-neighbor
method [4]. Let us define the distance d(p,G) of a
node p to the graph G with the set of nodes V as

d(p,G) = min
q∈V
‖p− q‖. (3)

If d(p,G) ≤ ε for some radius ε, the node p is called
the ε-neighbor of G.

We start with a graph G1 with a single edge and two
nodes. At the next iteration, we add another edge
with two nodes. If any new node is the ε-neighbor of
G1, then we merge it with the closest node in G1.

The idea is best illustrated with a toy example:
a

e11 e12

e11
e21 e22

ε
ε

c

e11

e12

e21

e22ε

ε

b

e11

e12

e21

e22ε

ε

d

e11

e12

e21
e22

ε

ε

e12

e21

e11

e11

e12 e11

e12

e21
e22

e22

e12

(a) Initially the graph G1 consists of one edge e11e12.
At the next stage, we determine how to connect a
new edge e21e22 to the existing graph G1. The node
e21 is within the ε radius of the node e11. So e21 is
the ε-neighbor of G1 and has to be merged with e11.
(b) The coordinates of the node e11 is updated to e11

′

and the new edge e11
′ e22 is included in G2. Other

possibilities are explained in [4].
This merging and deletion process is iteratively per-

formed until all edges are included into the graph.

Results
Permutation test on the degree distributions
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0.015 0.073

0.0860.057 <0.001 <0.001

1000 permutations, Bonferroni correction, (#) p <0.10,
(*) p <0.05; (a) observed differences (b) null distribution
Significant differences:

• PI > NC at low degrees (1 and 3)

• NC > PI at high degrees (15, 18, 20, 21)

Simplified ε-neighbor graphs
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The thickness of edge codes the strength of connection
Connections within the corpus callosum:

• Disjointed in PI when ε ≥ 12 mm

• Intact in NCs even for ε = 18 mm

Discussion
We have presented a novel structural connec-
tivity mapping technique that uses only T1-
weighted MRI. The global difference in degree
distribution is significant. Visually, there seems
to be a local network difference in the mid-body
of the corpus callosum, which is known to be
reduced due to the early stress [5].
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