

The Waisman Laboratory for Brain Imaging and Behavior

Boosting Network Signals

Moo K. Chung
Department of Biostatistics and Medical Informatics
Waisman Laboratory for Brain Imaging and Behavior
University of Wisconsin-Madison

www.stat.wisc.edu/~mchung

Acknowledgement

Jamie Hanson
University of Pittsburgh

Nagesh Adluru, Andrew L. Alexander, Richard J. Davidson, Seth Pollack University of Wisconsin-Madison

We will show two techniques for boosting brain network signals.

DTI study on maltreated children

- 3T DTI: 2 x 2 x 3 mm resolution
- 23 maltreated children who have been postinstitutionalized in orphanages but later adopted in WI.
- Age-matched 31 normal control subjects.
- Age distribution

Maltreated: 11.26 ± 1.71 years

Controls: 11.58 ± 1.61 years

CAMINO-based tractography

Showing 3000 tracts out of 10000 tracts

Outlying tracts are culled.

AAL parcellation with 116 tracts

Tract count is used as the measure of connectivity.

Difficulty of detecting network signals

Node level analysis pvalue 0.05/116 = 0.00043

Mean connectivity
Based on tract count

Network 116*115/2 = 6670 connections pvalue = 0.05/6670= 0.00000075

In DTI, 1813 connections pvalue 0.05/1813 = 0.0000275

16 times more difficult!

Node level analysis

116 comparisons→ 1 comparison

Average node degrees

Controls - Maltreated

t-stat 2.95 (pvalue = 0.0048) t-stat -2.08 (pavlue = 0.0423)

Solution

Must reduce the number of comparisons

How? Graph theory features

Node degree: number of connections at node

1813 parameters to 116 parameters

Parametric model on degree distribution

Brain network is not scale-free Follows exponential decay

$$P(k) \sim e^{-\lambda k}$$

Result based on 4 decimal accuracy

Gong et al. (2009) and Zalesky et al. (2010) reported the truncated power law:

$$P(k) \sim k^{-\gamma} e^{-\lambda k}$$

The statistical logic in the paper is incorrect.

Hub nodes

Label	Parcellation Name	Combined	Controls	Maltreated
PQG	Precuneus-L	16.11	16.87	15.09
NLD	Putamen-R	14.96	15.26	14.57
O2G	Occipital-Mid-L	14.44	15.52	13.00
T2G	Temporal-Mid-L	14.30	15.16	13.13
HIPPOG	Hippocampus-L	13.15	13.94	12.09
FAD	Precentral-R	12.85	14.00	11.30
ING	Insula-L	12.56	13.61	11.13
FAG	Precentral-L	12.43	13.45	11.04
PQD	Precuneus-R	12.00	12.03	11.96
PAG	Postcentral-L	11.89	12.52	11.04
NLG	Putamen-L	11.39	11.68	11.00
F1G	Frontal-Sup-L	11.22	12.13	10.00
HIPPOD	Hippocampus-R	11.15	11.90	10.13

Probability of this happening?

 $2^{-13} = 0.00012$

Edge level analysis

1813 comparisons x 3 connectivity maps

→ 1813 comparisons

Three different connectivity measures

Tract count

length-based model

length-based Model + FA

Three similar t-statistics maps without statistical significance

None of edges are significant at FDR 0.05 level

Meta-analytic aggregation Weighted t-statistics

$$T = \frac{w_1 t^1 + \dots + w_n t^n}{\sqrt{w_1^2 + \dots + w_n^2}} \sim N(0, 1)$$

Significant nodes at FDR at 0.05

max. t-stat. = 5.59

min. t-stat. = -5.34

 $(p-value = 1.11 \times 10^{-8})$

 $(p-value = 4.55 \times 10^{-8})$

- HIPPOD PARA-HIPPOD V1G
- AMYGDG QGQDLINGD O1G

Label

FMOD

- O2GO2D
- **FUSID** PQGPQD

LPCG

NLG

THAD

- - - - Precuneus-L

 - Precuneus-R.

 - Paracentral-Lobule-L Putamen-L

Parcellation Name

Frontal-Med-Orb-R

Rectus-R.

Cingulum-Post-R

Hippocampus-L

Hippocampus-R

ParaHippocampal-R

Amygdala-L

Calcarine-L

Cuneus-L

Cuneus-R

Lingual-R

Occipital-Sup-L

Occipital-Mid-L

Occipital-Mid-R

Fusiform-R

Thalamus-R

Postdoctoral positions

Multimodal (MRI/DTI/fMRI) twin brain network study

200 twin pairs

