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Abstract

In this report, we propose a novel automatic and computationally efficient method of Fourier imaging
analysis using Fourier transform. Besides Fourier transform’s many applications, one can use Fourier
transform to select significant frequencies of an observed noisy signal, which can be applied as a model
selection tools of (weighted) Fourier series analysis of medical images. Both simulated data and Corpus
Callosum (CC) data are used to demonstrate the advantages ofour method over previous methods. The
possibilities of applications of this method to image analysis is discussed.

1 Introduction

Fourier transform (FT) is named in the honor of Joseph Fourier (1768-1830), one of greatest names
in the history of mathematics and physics. Mathematically speaking, The Fourier transform is a linear
operator that maps a functional space to another functions space and decomposes a function into another
function of its frequency components. The formulae used to defined Fourier transform vary according
to different authors (Arfken, 1985, Krantz, 1999 and Trott,2004). But they are essentially the same but
using different scales. In this report, we are using the definition in Bracewell, 1999, which is widely
used in many literatures (e.g. Brigham, E.O., 1988, Körner, 1988, Sogge, 1993 and Kammler, 2000) .
Supposeg ∈ L(C), C = {x + yi : x, y ∈ R}. Fourier transformis a linear operatorF : L(C) → L(C)
defined as

G(w) = Fg(w) =
1√
2π

∫ ∞

−∞
g(t)e−iwtdt, w ∈ R.

If g is sufficiently smooth, then it can be reconstructed from itsFourier transform using theinverse
Fourier transform

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

si
gn

al

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency

A
m

pl
itu

de

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency

ph
as

e

Figure 1. The amplitude (left) and phase function of the Fourier transform ofg = 0.7 sin(3x) + 0.5 sin(18x).



If g is sufficiently smooth, then it can be reconstructed from itsFourier transform using theinverse
Fourier transform

g(x) =
1√
2π

∫ ∞

−∞
G(w)eiwtdw.

The existence of inverse Fourier transform tells us that, for certain conditions, a function can be uniquely
represented by its Fourier transform. For the purpose of interpretation and visualization, Fourier trans-
form G(w) is usually expressed in polar coordinate asG(w) = A(w) · eip(w), where we callA(w) =
‖G(w)‖ the amplitude function andp(w) = ∠G(w) the phase function (as shown in Figure 1).

Fourier transform, which was first proposed to solve PDEs such as Laplace, Heat and Wave equa-
tions, has enormous applications in physics, engineering and chemistry. Some applications of Fourier
transform include (Bracewell, 1999)

1. communication:Fourier transform is essential to understand how a signal behaves when it passes
through filters, amplifiers and communications channels (Chowning, 1973, Brandenberg and Bosi,
1997 and Bosi and Goldberg, 2003).

2. image processing:Transformation, representation, and encoding, smoothingand sharpening im-
ages.

3. data analysis:Fourier transform can be used as high-pass, low-pass, and band-pass filters and it
can also be applied to signal and noise estimation by encoding the time series (Good, 1958, 1960,
Harris, 1978, Zwicker and Fastl, 1999, Kailath,et al., 2000 and Gray and Davisson, 2003).

In this report, we focus on the applications of Fourier transform to image analysis, though the tech-
niques of applying Fourier transform in communication and data process are very similar to those to
Fourier image analysis, therefore many ideas can be borrowed (Zwicker and Fastl, 1999, Kailath,et al.,
2000 and Gray and Davisson, 2003). Similar to Fourier data orsignal analysis, the Fourier Transform
is an important image processing tool which is used to decompose an image into its sine and cosine
components. Comparing with the signal process, which is often using 1-dimensional Fourier transform,
in imaging analysis, 2 or higher dimensional Fourier transform are being used. Fourier transform has
been widely applied to the fields of image analysis.

Image segmentation is one of the most widely studied problemin image analysis. Many literatures
also found that Fourier transform can be used effectively inimage segmentation. Shuet al. (1992) pre-
sented an efficient algorithm to compute the critical dimensions of aligned rectangular and trapezoidal
wafer structures using images generated by a Fourier imaging system. Paquetet al. (1993) introduced
a new approach for the segmentation of planes and quadrics ofa 3-D range image using Fourier trans-
form of the phase image. Li and Wilson (1995) established a Multiresolution Fourier Transform to
approach the segmentation of images based on the analysis oflocal information in the spatial frequency
domain. Wuet al. (1996) presented an iterative cell image segmentation algorithm using short-time
Fourier transform magnitude vectors as class features. Escofet et al. (2001) applied Fourier transform
to image segmentation and pattern recognition. Zou and Wang(2001) proposed a method to exploit the
auto-registration property of the magnitude spectra for texture identification and image segmentation.
Our method can potentially be applied to many of those previous segmentation problems.

Fourier transform image classification techniques were also widely used. Robert (1980) introduced
The discrete Fourier transform (DFT) automated satellite imagery classification technique is designed
to detect and identify cloud features from 25 x 25 nautical mile (nm) Defense Meteorological Satellite
Program (DMSP) visible and infrared imagery samples. Levchenkoet al., 1992 designed a neural net-
work for image Fourier transform classification. Harte and Hanka, 1997, designed an algorithm for large
classification problem usingFast Fourier Transform(FFT). This paper was trying to deal with curse of
dimensionality problem, which is the purpose of this paper too. Tang and Stewart, 2000 used Fourier
transform to classify optical and sonar images. The classification performance of Fourier transform was



compared with that of wavelet packet transform. Kunttuet al. (2003) applied Fourier transform to per-
form image classification.

Lustig et al. (2004) presented a fast and accurate discrete spiral Fourier transform and its inverse.
The inverse solves the problem of reconstructing an image from MRI data acquired along a spiral k-space
trajectory. Rowe and Logan (2004), Rowe (2005) and Roweet al. (2007) used Fourier transform to re-
construct signal and noise of fMRI data utilizing the information of phase functions of Fourier transform
of images.

Most papers described above have one thing in common: they did not talked about how to choose the
important frequencies of Fourier transform. While some of them discussed or focused on how to choose
the frequencies up to certain degrees and used those frequencies to represent the signals. Mezrich (1995)
propose an imaging modalities that one can choose the dimension of K-space and therefore choose the
proper number of frequencies of the observed signal. Wuet al. (1996) obtained theK-space using so
called “short-time Fourier transform magnitude vectors”.Lustig et al. (2004) also proposed a fast spiral
Fourier transform to effectively choose theK-space. Li and Wilson (1995) proposed Laplacian pyramid
method to filter out the high frequencies by using a unimodal Gaussian-like kernel to convolve with
images. The problem with those selection methods and procedures did not work on the possibility that
even some low frequencies are not necessarily important. And after picked up the important frequencies,
they chose inverse Fourier transform to reconstruct the signal. While for some cases, using the Fourier
transform itself, we can construct the signal by applying the Fourier transform to Fourier series analysis.

In this report, we are going to propose a method that using Fourier transform as model selection tool
to do Fourier image (in Section III) based on the important properties of Fourier transform (in Section
II). And some uncomplete works, possible works and how we mayapply our method to various image
analysis procedures are presented in the Discussions (Section IV).

2 Properties of Fourier Transform

The applications of Fourier transform are abased on the following properties of Fourier transform.

Theorem 2.1 For a given abounded continuous integrable function (e.g.f ), we denote the correspond-
ing capitol letter (e.g.F ) as its Fourier transform.

a. if g(x) = f(x − a), thenG(w) = e−iawF (w).

b. If g(x) = f(x/λ), thenG(w) = λF (λw).

c. If h = f ∗ g, thenH(w) = F (w)G(w).

d. If d(x) = f ′(x), thenD(w) = iwF (w).

e. If f(x) = cos(2πw0x), thenF (w) = δ(w + w0) + δ(w − w0); If f(x) = sin(2πw0x), then
F (w) = δ(w + w0) + δ(w − w0).

The above properties can be used to find the solution of heat equation with initial values as stated in
the following theorem.

Theorem 2.2 Letf0 be a bounded integrable function inRn. The unique solution to the heat equation
{

ft − ∆f = 0, t > 0 andx ∈ R
n

f(x, 0) = f0

is given byf(x, t) = h ∗ f0, whereh = e−‖x‖2/t.

Proof. By Fourier expansion,f(p) =
∑∞

j=0〈f, φj〉φj(p). Fourier transform yieldsGt(w, t) = ‖w‖2G(w, t).

ThenG(w, t) = e−t‖w‖2

F (w). Note that the Fourier transform ofe−‖x‖2/t is e−t‖w‖2

and properties c
in Theorem 2.1, one ten use inverse Fourier transform to finish the proof. �



3 One-dimensional Fourier analysis using Fourier Transform

In this report, we are going to apply these properties to Fourier analysis of image analysis. LetM be a
compact manifold. Hilbert spaceL2(M) is defined with an inner product

〈f, g〉 =
1

µ(M)

∫

M
f(x)g(x)dµ(x).

Let {φj}∞j=1, a complete orthnormal basis ofL2(M). Then the Fourier series off ∈ L2(M) of a
given signalf is

f(p) =

∞
∑

j=1

〈f, φj〉φj(p), p ∈ M.

A most widely used special case of Fourier series is Fourier expansion. LetM be the unit circle.
A complete orthonormal basis ofL2(M) is given as{1/2, cos(ix), sin(ix), i = 1, 2, · · · }. Then any
functionf ∈ L2(M) can have the Fourier expansion as

g =
a0

2
+

∞
∑

i=1

(ai cos(ix) + bi sin(ix)

where

ai =
1

π

∫ 2∗π

0
f cos(ix)dx

bi =
1

π

∫ 2∗π

0
f sin(ix)dx.

Using Theorem 2.1, forf(x) = a0

2 +
∑∞

n=1(an cos(nx) + bn sin(nx)) we have

F (w) =
a0

2
δ(w) +

∞
∑

n=1

(an(δ(w + n) − δ(w − n))

+bn(δ(w + n) − δ(w − n)))

=
a0

2
δ(w) +

∞
∑

n=1

((an + bn)δ(w + n) + (an − bn)δ(w − n)) (1)

So from the amplitude of Fourier transform off , we can figure out all the{a0, a1, b1, · · · }.

But traditionally, (Chunget al., 2007), to estimatef =
∑K

i=1 exp(−λit)βiφi + ǫ, we first estimate
β = (β1, β2, · · · , βK) in model

f = Y β + ǫ. (2)

wheref is the interested curve or surface, and the design matrix

Y =







φ1(p1) · · · φK(p1)
...

. . .
...

φ1(pn) · · · φK(pn)







{φi}k
i=1 are Fourier or spherical harmonic basis functions. The least squares estimation (LSE) ofβ is

given by
β̂ = (Y ′Y )−1Y ′f . (3)

One problem with LSE is that LSE is very computational inefficient, especially for those high fre-
quency signals as we are going to show in our first simulation.For medical images, the data can be
extremely large, which means the design matrices can be too large for computers’ memory to load and



it is impossible to operate these large matrices. For LSE method, one also has to calculate the inverse
matrices. General PCs can not handle the computation of the inverse of very large matrices. To handle
this problem,Iterative Residual Fitting(IRF) (Chunget. al, 2007), are proposed. But the limitations of
IRF are no model selection procedure and no stopping rules.

The problem of Fourier analysis of one-dimensional signalscan be modeled as follows: suppose one
trying to estimate signalg(x), x ∈ [0, 2π]. Only noisy signal is observed

g1(x) = g(x) + ǫ(x)

whereǫ(x) ∼ N(0, σ2) is the white noise; one is trying to find the Fourier series representation of the
true signal

ĝ =
a0

2
+

K
∑

n=1

(an cos(nx) + bn sin(nx))

whereK is selected manually or automatically.

In this report, we propose an alternative method of Fourier analysis using Fourier transform. Firstly,
we calculate the Fourier transform of an observed signal (orfunction). Then, using the following selec-
tion rule to select the most important frequencies: a frequency is selected if

‖
√

n(F (w) − MeanF (w))

StdF (w)
‖ > tn−1,0.005

The intuition of this method is that if we supposeF (w) are normally distributed, we pick the frequencies
that contribute to the Fourier transform “Significantly” at0.01 level, which means we miss an important
frequency with a probability less than 0.01 . After we pick upthe significant frequencies, we finally use
(1) to approximate the true signal. Our following simulations will also give clear demonstration of our
procedure.

Our first simulation is to estimate the sinusoid signal. For this simulation, we let

g1(x) = 0.7 sin(7x) + sin(18x) + ǫ

whereǫ ∼ N(0, 0.22) as shown in Figure 2.
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Figure 2. Original and noisy curve used in the simulation.

So as we see, to estimate the signalg(x) using Least-squares estimation, one has to generate at least
2 × 18 + 1 basis function. On the other hand, using Fourier transform,one can easily find that 2 basis



functions are enough for our analysis. And at the same time, Fourier transform gives the estimation
of coefficients of the corresponding basis functions as shown in Figure 6. So we see that, when we
using 1000 observations, the amplitudes are not exactly at 0.7 and 1. The main reason is because of
the presence of noise. The other reason is that one has finite range of observations while the Fourier
transform is defined over the whole real line. If one increasethe range of observations, as shown in
Figure 3, we can have much better FT results.
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Figure 3. Fourier transform results using diffrent observation range.

The using the results of Fourier transform, we estimate the signal function as shown in Figure 4. We
see that, when using 1000 observations, the estimation is over-smoothing. But if we increase the range
of observations, we have a very good estimation of the original signal.
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Figure 4. Curve estimation using Fourier transform.

From above simulation, we see that, for estimation of trigonometric functions or their combinations,
Fourier transform will give really good and really fast results comparing with Least-squares estimation.
Consider that if the signal function has one part assin(nx) whenn is very large, the Least-squares esti-
mation will be very inefficient to use all the2n + 1 basis functions.

Now, let’s check how the Fourier transform works on more general signal estimation. Let true signal
be

g(x) = x2 · (x − 2π)2, x ∈ [0, 2π].

Note thatg(x) is periodic and smooth (its first derivative is continuous) as shown in Figure 5. And for
the general curve that we defined above, one still find the fitting is very good and it is very fast as shown
in Figure 6.
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Figure 5. A non-trigonometric curve
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Figure 6. The FT estimation of non-trigonometric curve

Figure 7. Some results of GVF snakes.

We finally apply our method to the CC data. The boundaries of CC’s are extracted using Gradient
Vector Flow snakes (Xu and Prince, 1998) as shown in Figure 7.As one can see, that GVF snakes can
converge to the concave parts of the boundaries, thus capture the detailed information of the boundaries.
At the meantime, GVF snakes will provide noisy boundaries ofCC’s. So a smooth CC boundaries should
be provided. Firstly, using arc-length parametrization, for each obtained discrete curve{pi}n

i=1, we have

C(si) = (x(si), y(si)), 0 = s1 < s2 · · · < sn = 2π.

Then, we are going to perform Fourier analysis on two curvex(s) andy(s), s ∈ [0, 2π] as shown in
Figure 8. And Figure 9, 10 show the results of Fourier analysis using Fourier transform. We see that FT
gave comparable results to LSEs, while FT used fewer basis functions.
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Figure 8. The closed curve decomposed into two functions.
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Figure 9. The amplitude functions ofx(s) andy(s).
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Figure 10. The reconstructed boundary of CC. The black curves are the observation, the blue curves are FT
results and the LSEs of degree 6 Fourier expansion are red curves.

4 Discussions

From the Fourier analysis of simulated data and CC boundaries using Fourier transform, we conclude
that our method has the following advantages over LSE:

1. Automatics model selection:we gave an automatic model selection procedure that is similar to
the classical outlier tests in Statistics. Its validation still need to be investigate thoroughly later.

2. Computation efficiency:By the model selection procedure, our method always pick only signifi-
cant frequencies, which can save us a lot computation. For some cases (such as the one in our first
simulation), our method can show extreme advantage over LSE. And to numerically computation
to Fourier transform, we are using Fast Fourier Transform, which is first introduced by Cooley
and Tukey, 1965, the Cooley-Tukey algorithms. Then this algorithm was widely accepted, imple-
mented and improved (Nassbauner, 1982, Ramirez, 1985, Gentleman and Sande, 1996 and Walker,
1996). The bound on complexity and operation counts isO(N log(N)), whereN is the number
of observations. For LSE, the bound on complexity and operation counts isO(P 3), whereP is the



number of basis. So these two methods are not comparable the bounds of complexity and operation
counts in all cases. But since the order of LSE is 3, which is much higherN log(N) = o(N2), so
at least for some cases, our method should be faster than LSE.Harte and Hanka also used Fourier
transform to deal with large scaled problem. The performance of their method and ours can be
compared later.

We can also generalize our method to two-dimensional Fourier analysis using Fourier transform.
Suppose we have closed surfaces

S(θ, φ) = (X(θ, φ), Y (θ, φ), Z(θ, φ)).

So Fourier transform is performed onX(θ, φ), Y (θ, φ), Z(θ, φ) individually.

Figure 10. The closed surface decompose into three surfaces.

Figure 11. The amplitude functions ofX(θ, φ), Y (θ, φ) andZ(θ, φ).

Therefore, we can perform the similar model selection procedure to select importance “pikes” as shown
in Figure 11. But at this moment, the reconstruction formulae are not very clear yet. One still need to
find the Fourier transform of similar format to (1).

If one can specify the format of Fourier transform on the unitsphereSn, one can also find another
proof (similar to the proof of Theorem 2.1) of the following important theorem in Weighted Fourier
Analysis, which is a generalized version of Theorem 2.1.

Theorem 4.1 (Moo et al., 2007) Consider a Cauchy problem of linear operator L : L2(M) → L2(M),

{

∂g(p,t)
∂t + Lg(p, t) = 0, t ≥ 0

g(p, 0) = f(p).

It defines a natural smoothing procedure.t controls the amount of smoothing and is termed as the
bandwidth. The unique solution to (1) is given as

g(p, t) =

∞
∑

j=0

e−λjt〈f, φj〉φj(p),

whereλj ’s andφj ’s are the eigenvalues and eigenfunctions ofL. We callg(p, t) is a Weighted Fourier
Series (WFS).



Theorem 4.1 can be proved using the Fourier series off0 and the plug into the equation too.

Therefore, one may apply our method to image segmentation asa tool to select basis functions for the
variational problem (like snake algorithm using splines).While, unlike what people before, the number
of basis function are more flexible and thus the computation is more efficient based on our method. Using
the magnitudes of Fourier transform, one may represent the functional signals as multivariate signals and
thus able to apply linear classification methods. And our method itself is already a fast and efficient way
to reconstruct signals or images. While all those have to be tested thoroughly in more rigorous ways in
the future research.
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