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Abstract

In this report, we propose a novel automatic and computallipefficient method of Fourier imaging
analysis using Fourier transform. Besides Fourier transfbomany applications, one can use Fourier
transform to select significant frequencies of an obsenaslyrsignal, which can be applied as a model
selection tools of (weighted) Fourier series analysis afiice images. Both simulated data and Corpus
Callosum (CC) data are used to demonstrate the advantages wfethod over previous methods. The
possibilities of applications of this method to image asalys discussed.

1 Introduction

Fourier transform (FT) is named in the honor of Joseph Fol(tié68-1830), one of greatest names
in the history of mathematics and physics. Mathematicagllyaking, The Fourier transform is a linear
operator that maps a functional space to another functipasesand decomposes a function into another
function of its frequency components. The formulae usedefindd Fourier transform vary according
to different authors (Arfken, 1985, Krantz, 1999 and Tra@04). But they are essentially the same but
using different scales. In this report, we are using the dfinin Bracewell, 1999, which is widely
used in many literatures (e.g. Brigham, E.O., 1988¢rter, 1988, Sogge, 1993 and Kammler, 2000) .
Supposg € L(C),C = {x + yi : z,y € R}. Fourier transformis a linear operatof' : L(C) — L(C)
defined as

G(w) = Fg(w) = \/% /_OO g(t)e ™dt, w eR.

If ¢ is sufficiently smooth, then it can be reconstructed fromFibsirier transform using thiverse
Fourier transform
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Figure 1. The amplitude (left) and phase function of the Furansform ofy = 0.7 sin(3z) + 0.5 sin(18x).



If ¢ is sufficiently smooth, then it can be reconstructed fromFibsirier transform using thiverse
Fourier transform

1 > wt
g(x) = E/—oo G(w)e"™ dw.

The existence of inverse Fourier transform tells us thatdéotain conditions, a function can be uniquely
represented by its Fourier transform. For the purpose efpinétation and visualization, Fourier trans-
form G(w) is usually expressed in polar coordinate(d@v) = A(w) - ¢?), where we calld(w) =

|G (w)|| the amplitude function ang(w) = ZG(w) the phase function (as shown in Figure 1).

Fourier transform, which was first proposed to solve PDE#$ siscLaplace, Heat and Wave equa-
tions, has enormous applications in physics, engineengchemistry. Some applications of Fourier
transform include (Bracewell, 1999)

1. communication:Fourier transform is essential to understand how a sigriaes when it passes
through filters, amplifiers and communications channelo(@iing, 1973, Brandenberg and Bosi,
1997 and Bosi and Goldberg, 2003).

2. image processingTransformation, representation, and encoding, smoothinthsharpening im-
ages.

3. data analysis:Fourier transform can be used as high-pass, low-pass, antigzes filters and it
can also be applied to signal and noise estimation by engddatime series (Good, 1958, 1960,
Harris, 1978, Zwicker and Fastl, 1999, Kailadt,al, 2000 and Gray and Davisson, 2003).

In this report, we focus on the applications of Fourier tfama to image analysis, though the tech-
niques of applying Fourier transform in communication amathdorocess are very similar to those to
Fourier image analysis, therefore many ideas can be bod¢dwicker and Fastl, 1999, Kailatlef al.,
2000 and Gray and Davisson, 2003). Similar to Fourier datigmal analysis, the Fourier Transform
is an important image processing tool which is used to decsm@n image into its sine and cosine
components. Comparing with the signal process, which enafising 1-dimensional Fourier transform,
in imaging analysis, 2 or higher dimensional Fourier transf are being used. Fourier transform has
been widely applied to the fields of image analysis.

Image segmentation is one of the most widely studied proliteimage analysis. Many literatures
also found that Fourier transform can be used effectiveiynimge segmentation. St al. (1992) pre-
sented an efficient algorithm to compute the critical dinmams of aligned rectangular and trapezoidal
wafer structures using images generated by a Fourier igayistem. Paquedt al. (1993) introduced
a new approach for the segmentation of planes and quadriz8d) range image using Fourier trans-
form of the phase image. Li and Wilson (1995) established #&iMsolution Fourier Transform to
approach the segmentation of images based on the analyssabinformation in the spatial frequency
domain. Wuet al. (1996) presented an iterative cell image segmentatiorritigo using short-time
Fourier transform magnitude vectors as class featuresof@st al. (2001) applied Fourier transform
to image segmentation and pattern recognition. Zou and &0@®[L) proposed a method to exploit the
auto-registration property of the magnitude spectra fetute identification and image segmentation.
Our method can potentially be applied to many of those prevgegmentation problems.

Fourier transform image classification techniques were &idely used. Robert (1980) introduced
The discrete Fourier transform (DFT) automated satelfitagery classification technique is designed
to detect and identify cloud features from 25 x 25 nauticder(rim) Defense Meteorological Satellite
Program (DMSP) visible and infrared imagery samples. Lemgbet al,, 1992 designed a neural net-
work for image Fourier transform classification. Harte arahkh, 1997, designed an algorithm for large
classification problem usingast Fourier Transform{FFT). This paper was trying to deal with curse of
dimensionality problem, which is the purpose of this paper. tTang and Stewart, 2000 used Fourier
transform to classify optical and sonar images. The classifin performance of Fourier transform was



compared with that of wavelet packet transform. Kumtal. (2003) applied Fourier transform to per-
form image classification.

Lustig et al. (2004) presented a fast and accurate disgpgi@ Sourier transform and its inverse.
The inverse solves the problem of reconstructing an imame MRI data acquired along a spiral k-space
trajectory. Rowe and Logan (2004), Rowe (2005) and Reinad. (2007) used Fourier transform to re-
construct signal and noise of fMRI data utilizing the infation of phase functions of Fourier transform
of images.

Most papers described above have one thing in common: thdeyoditalked about how to choose the
important frequencies of Fourier transform. While someheht discussed or focused on how to choose
the frequencies up to certain degrees and used those fi@gsién represent the signals. Mezrich (1995)
propose an imaging modalities that one can choose the diomeokK -space and therefore choose the
proper number of frequencies of the observed signal.et\al. (1996) obtained thé(-space using so
called “short-time Fourier transform magnitude vectotslstig et al. (2004) also proposed a fast spiral
Fourier transform to effectively choose thespace. Li and Wilson (1995) proposed Laplacian pyramid
method to filter out the high frequencies by using a unimodalisSian-like kernel to convolve with
images. The problem with those selection methods and puoesdlid not work on the possibility that
even some low frequencies are not necessarily importard.after picked up the important frequencies,
they chose inverse Fourier transform to reconstruct theasigVhile for some cases, using the Fourier
transform itself, we can construct the signal by applyirgRourier transform to Fourier series analysis.

In this report, we are going to propose a method that usingi€mansform as model selection tool
to do Fourier image (in Section Ill) based on the importapprties of Fourier transform (in Section
I1). And some uncomplete works, possible works and how we aggly our method to various image
analysis procedures are presented in the Discussionsq$&¢]}.

2 Propertiesof Fourier Transform

The applications of Fourier transform are abased on theviiillg properties of Fourier transform.

Theorem 2.1 For a given abounded continuous integrable function (¢)gwe denote the correspond-
ing capitol letter (e.g.F) as its Fourier transform.

if g(z) = f(z — a), thenG(w) = e~ F(w).
If g(x) = f(z/N), thenG(w) = A\F(Aw).

If h = f g, thenH(w) = F(w)G(w).

If d(x) = f'(z), thenD(w) = iwF(w).

If f(z) = cos(2mwoz), then F(w) = §(w + wp) + 6(w — wp); If f(z) = sin(2rwpz), then
F(w) = 6(w + wp) + d(w — wy).
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The above properties can be used to find the solution of he@ttieq with initial values as stated in
the following theorem.

Theorem 2.2 Let f, be a bounded integrable function Ri*. The unique solution to the heat equation
{ fi—Af = 0, t>0andz € R"
f(mv 0) = fO
is given byf (z,t) = h * fo, whereh = e~ ll=I*/t,

Proof. By Fourier expansionf (p) = Z;‘;O(f, ¢;)¢;(p). Fourier transform yield&',(w, t) = ||w||*G(w, t).

ThenG(w,t) = e~tI”II’ (). Note that the Fourier transform ef I#1*/ is ¢~lI* and properties ¢
in Theorem 2.1, one ten use inverse Fourier transform tdfiiis proof. O



3 One-dimensional Fourier analysisusing Fourier Transform

In this report, we are going to apply these properties to ieoanalysis of image analysis. L&l be a
compact manifold. Hilbert spade? (M) is defined with an inner product

1
-0 /M £(@)g(@)dp(z).

Let {¢;}52,, a complete orthnormal basis 6F(M). Then the Fourier series gf € L*(M) of a
given signalf is

= (f.¢)0i(p), peM.

J=1

A most widely used special case of Fourier series is Fouripamsion. LetM be the unit circle.
A complete orthonormal basis df?(M) is given as{1/2, cos(iz),sin(iz),i = 1,2,---}. Then any
function f € L?(M) can have the Fourier expansion as

[e.e]
= ?0 Z: a; cos(ix) + b; sin(iz)

where
1 2%
a; = — f cos(ix)dx
T Jo
1 2%
by = — fsin(iz)dx.
T Jo

Using Theorem 2.1, fof (z) = % + >, (a, cos(nx) + b, sin(nz)) we have

Fw) = Z6w)+ Y (an(d(w+n) = 6w —n))
n=1
+bp(6(w +n) — 6(w —n)))

= S0(w) + D ((@n +ba)3(w +n) + (an — bu)o(w — n)) )
n=1

So from the amplitude of Fourier transform ffwe can figure out all th¢ag, aq,b1, - }.

But traditionally, (Chunget al, 2007), to estimatg = S°X | exp(—\it)3;¢; + €, we first estimate
B = (51,52, ,Bk) in model
f=YB+e. 2)

where f is the interested curve or surface, and the design matrix

$1(p1) - ox(p1)
y — : _ .

{qzbz *_, are Fourier or spherical harmonic basis functions. The le@sares estimation (LSE) ¢f is

given by
= Y'Y) Y’y (3)

One problem with LSE is that LSE is very computational inéffit, especially for those high fre-
guency signals as we are going to show in our first simulatiéor medical images, the data can be
extremely large, which means the design matrices can beige for computers’ memory to load and



it is impossible to operate these large matrices. For LSHotgtone also has to calculate the inverse
matrices. General PCs can not handle the computation ofitleesie of very large matrices. To handle
this problem |terative Residual FittindIRF) (Chunget. al, 2007), are proposed. But the limitations of
IRF are no model selection procedure and no stopping rules.

The problem of Fourier analysis of one-dimensional signatsbe modeled as follows: suppose one
trying to estimate signaj(x), z € [0, 27]. Only noisy signal is observed

g1(z) = g(x) + €(x)

wheree(z) ~ N(0,0?) is the white noise; one is trying to find the Fourier seriesesentation of the
true signal

K
A ao .
9=+ E_l(an cos(nzx) + by, sin(nz))

whereK is selected manually or automatically.

In this report, we propose an alternative method of Founatysis using Fourier transform. Firstly,
we calculate the Fourier transform of an observed signdiufoetion). Then, using the following selec-
tion rule to select the most important frequencies: a fraqueés selected if

” vn(F(w) — MeanF (w))
Std F(w)

| > tn—1,0.005

The intuition of this method is that if we suppoBgw) are normally distributed, we pick the frequencies
that contribute to the Fourier transform “Significantly’G01 level, which means we miss an important
frequency with a probability less than 0.01 . After we pickthp significant frequencies, we finally use
(1) to approximate the true signal. Our following simulasowill also give clear demonstration of our

procedure.

Our first simulation is to estimate the sinusoid signal. R simulation, we let
g1(x) = 0.7sin(7x) + sin(18z) + €
wheree ~ N(0,0.22) as shown in Figure 2.

Noisy signals with noise St.D == 0.20
2 T T T
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Figure 2. Original and noisy curve used in the simulation.

So as we see, to estimate the siggn@l) using Least-squares estimation, one has to generate &t leas
2 x 18 4+ 1 basis function. On the other hand, using Fourier transfame, can easily find that 2 basis



functions are enough for our analysis. And at the same tiroariér transform gives the estimation

of coefficients of the corresponding basis functions as shiowFigure 6. So we see that, when we
using 1000 observations, the amplitudes are not exactly7atu®d 1. The main reason is because of
the presence of noise. The other reason is that one has fnige rof observations while the Fourier
transform is defined over the whole real line. If one increimerange of observations, as shown in
Figure 3, we can have much better FT results.

09 = = = 1000 observations —

= double the Range
0.8 -

0.7

0.6~

0.5

0.4

0.3

0.21-

0.1

25 30 35 40 45 50
time (milliseconds)

Figure 3. Fourier transform results using diffrent obsgorarange.

The using the results of Fourier transform, we estimateitiresfunction as shown in Figure 4. We
see that, when using 1000 observations, the estimatioreissmmoothing. But if we increase the range
of observations, we have a very good estimation of the algignal.

= = = true signal

151 O Noisy signal

= 1000 observations
double the range

-0.5 o —

0 5 10 15 20 25 30 35 40 45 50
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Figure 4. Curve estimation using Fourier transform.

From above simulation, we see that, for estimation of tragoatric functions or their combinations,
Fourier transform will give really good and really fast rksiccomparing with Least-squares estimation.
Consider that if the signal function has one partia$nz) whenn is very large, the Least-squares esti-
mation will be very inefficient to use all tH& + 1 basis functions.

Now, let’'s check how the Fourier transform works on more gainggnal estimation. Let true signal
be
g(x) =2 (x —2m)?, =z €0,2n).

Note thatg(x) is periodic and smooth (its first derivative is continuous)shown in Figure 5. And for
the general curve that we defined above, one still find thadiis very good and it is very fast as shown
in Figure 6.
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Figure 5. A non-trigonometric curve
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Figure 6. The FT estimation of non-trigonometric curve

Figure 7. Some results of GVF snakes.

We finally apply our method to the CC data. The boundaries o @ extracted using Gradient
Vector Flow snakes (Xu and Prince, 1998) as shown in Figurks7/one can see, that GVF snakes can
converge to the concave parts of the boundaries, thus eaghteidetailed information of the boundaries.
At the meantime, GVF snakes will provide noisy boundarie§©fs. So a smooth CC boundaries should
be provided. Firstly, using arc-length parametrizatiam,gfach obtained discrete curye; }7_,, we have

C(s;) = (x(si),y(si))y, 0=s81 <83+ - < 8, = 2.

Then, we are going to perform Fourier analysis on two curi® andy(s), s € [0,2x] as shown in
Figure 8. And Figure 9, 10 show the results of Fourier analysing Fourier transform. We see that FT
gave comparable results to LSEs, while FT used fewer basdifuns.
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Figure 8. The closed curve decomposed into two functions.
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Figure 9. The amplitude functions of s) andy(s).
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Figure 10. The reconstructed boundary of CC. The black cuave the observation, the blue curves are FT

results and the LSEs of degree 6 Fourier expansion are redscur

4 Discussions

From the Fourier analysis of simulated data and CC bourslaseng Fourier transform, we conclude
that our method has the following advantages over LSE:

1. Automatics model selectionwe gave an automatic model selection procedure that isagirtail
the classical outlier tests in Statistics. Its validatitith seed to be investigate thoroughly later.

2. Computation efficiency:By the model selection procedure, our method always pick sighnifi-
cant frequencies, which can save us a lot computation. Foe sases (such as the one in our first
simulation), our method can show extreme advantage over AB& to numerically computation
to Fourier transform, we are using Fast Fourier Transfortmiclvis first introduced by Cooley
and Tukey, 1965, the Cooley-Tukey algorithms. Then thisrtlgm was widely accepted, imple-
mented and improved (Nassbauner, 1982, Ramirez, 1985le@e&rt and Sande, 1996 and Walker,
1996). The bound on complexity and operation count9(i8/ log(N)), whereN is the number
of observations. For LSE, the bound on complexity and ofmerabunts isO(P?3), whereP is the



number of basis. So these two methods are not comparableuinel® of complexity and operation

counts in all cases. But since the order of LSE is 3, which islmhigherN log(N) = o(N?), so

at least for some cases, our method should be faster thanHs8t and Hanka also used Fourier
transform to deal with large scaled problem. The perforraawictheir method and ours can be
compared later.

We can also generalize our method to two-dimensional Foanalysis using Fourier transform.
Suppose we have closed surfaces

0.5
0
-05

e
0.5 "
0\\\ /0
-05 /1

Figure 10. The closed surface decompose into three surfaces
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Figure 11. The amplitude functions &f(6, ¢), Y (0, ¢) andZ (0, ¢).

Therefore, we can perform the similar model selection ptaceto select importance “pikes” as shown
in Figure 11. But at this moment, the reconstruction forraudee not very clear yet. One still need to
find the Fourier transform of similar format to (1).

If one can specify the format of Fourier transform on the gpiereS™, one can also find another
proof (similar to the proof of Theorem 2.1) of the followinmportant theorem in Weighted Fourier
Analysis, which is a generalized version of Theorem 2.1.

Theorem 4.1 (Moo et al., 2007) Consider a Cauchy problem of linear operat : L?(M) — L?*(M),

{—8g§§’t)+£g(p,t) — 0, t>0
9(p,0) = f(p).

It defines a natural smoothing procedure.controls the amount of smoothing and is termed as the
bandwidth. The unique solution to (1) is given as

g(p.t) =D _ e N[, 05)6;(p),
=0

where);’s and ¢;'s are the eigenvalues and eigenfunctionsCofWe callg(p, t) is a Weighted Fourier
Series (WFS).



Theorem 4.1 can be proved using the Fourier serigfg ahd the plug into the equation too.

Therefore, one may apply our method to image segmentatiatcms to select basis functions for the
variational problem (like snake algorithm using spliné&hile, unlike what people before, the number
of basis function are more flexible and thus the computaiondre efficient based on our method. Using
the magnitudes of Fourier transform, one may representtieibnal signals as multivariate signals and
thus able to apply linear classification methods. And ouhoeitself is already a fast and efficient way
to reconstruct signals or images. While all those have tesid thoroughly in more rigorous ways in
the future research.
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