

Project: Heat kernel construction on cortical surface using geodesic distance

STAT 992: Statistical Methods in Signal and Image Analysis

Instructor: Moo K. Chung

Tulaya Limpiti
May 15, 2004

1 Introduction

In medical imaging, measured data always suffer from noise. One way to effectively
increase the signal-to-noise ratio is to perform smoothing on the data, where data points
are weighted-averaged with their neighbors. Smoothing can be viewed as low-pass
filtering, since the high-frequency components are removed from the smoothed data. In
brain imaging, the data points lies on the cortical surface, and the underlying functional
data are naturally smooth, for example, cortical thickness, blood oxygenation level
dependent, or neural activity patterns [7,1,2]. To estimate signal component from noisy
observations, kernel-based smoothing is the most popular non-parametric estimator.
Different kernels have been used in the smoothing process, such as uniform (square)
kernel, Gaussian kernel, Epanechnikov kernel, and triweight kernel [16]. The most
widely used kernel is Gaussian kernel, which is originally defined on an n-dimensional
Euclidean space.

Nevertheless, in brain imaging our data of interest lies
instead on a cortical surface, which is assumed to be a
smooth two-dimensional Riemannian manifold [8]. Because
of the convoluted nature of the cortical surface, two points on
the surface that appear close together in a Euclidean sense
can actually be very far apart, for example, when each of the
two points lies on an opposite bank of a sulcus (see figure 1).
Therefore, if we were to apply Gaussian kernel smoothing on
this manifold using a kernel that is isotropic in Euclidean
space, we may give large weights to data that are far away,
and small weights to data that are closer. In other words, we
would mistakenly put higher emphasis on the less correlated
data in the resulting weighted average, which would be
inappropriate. An alternative smoothing method is diffusion
smoothing using diffusion (heat) kernel. It has been shown
[6,8,11] that there is a tight relationship between heat kernel
and Gaussian kernel. On geometric manifolds, heat kernel is
a function of geodesic distance—shortest distance along the
surface—instead of Euclidean distance. Geodesic distance
provides a proper measure of correlations between data
points.

In this report, we construct heat kernels based on geodesic distances of data points on the
cortical surface and perform kernel smoothing using our kernels on cortical thickness
measurement data. We note that our heat kernel is locally equivalent to an isotropic
Gaussian kernel, and hence the amount of smoothness can be controlled by adjusting the
bandwidth matrix of the kernel. The geodesic distances calculation in our kernel
construction is carried out via dynamic programming. The generalization of the result to
anisotropic kernels smoothing is possible, although it is beyond the scope of this project.

Figure 1: Cortical surface.
The red and green dots are
close in the Euclidean sense.
But to get from one dot to the
other requires a long
traveling distance along the
curve (down the sulcus and
back up).

To represent the cortical surface, we have adopted the polygonal representation,
commonly used in the computer vision community. The problem of finding minimal
distances between arbitrary points on polyhedral surface has attracted interests of many
researchers in the field of graph theory, robotics motion planning, computer-aided
neuroanatomy, to name a few. Several algorithms have been developed. The first
algorithm is that of Dijkstra [10] where he solved the problem on graphs in 1959. Sharir
and Schorr [15] proposed the algorithm that finds the shortest path in O(n3 log n), where n
is the total number of nodes on the surface. However, they constrained themselves to
consider the problem only on convex polyhedrons. Mitchell, Mount, and Papadimitriou
came up with an improved algorithm with continuous Dijkstra structure and the
computational complexity of O(n2 log n) [12]. Other algorithms include those contributed
by Chen and Han [5], and Wolfson and Schwartz [17]. Among these algorithms, dynamic
programming (DP) finds itself become popular, due to its flexibility and its ease of
implementation for discrete constraint sets. The complexity of DP is O(n2).

This report is organized as followed. In the next section we review some relevant
backgrounds necessary to understand our proposed method. We start with the definition
of Gaussian kernel and heat kernel and their uses in data smoothing and estimation in
section 2.1. Riemannian manifold and its polygonal representation are explained in
section 2.2, where as in section 2.3 we give a mathematical description of geodesic
distance. Section 2.4 introduces the concepts of dynamic programming. In section 3 we
give details of our proposed construction of isotropic heat kernel on the cortical surface
using geodesic distance. Experimental results using cortical thickness measurement data
are presented in section 4. Finally, we conclude with some discussions on our results in
the last section.

Throughout the report, matrix and vector quantities are written in bolded-face uppercase
and lowercase letters, respectively. Superscript {⋅}T denotes matrix transpose, and
superscript {⋅}-1 denotes matrix inverse.

2 Backgrounds

2.1 Gaussian kernel and Heat kernel

Generally, a Gaussian kernel is defined in an n-dimensional Euclidean space as

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

2
)(exp)(det2)(

1
2/1

2
xHHxHHxK

TT
T

n

H π (1)

where x = [x1, x2, … , xn]T ∈ ℜn. The n-by-n matrix H is called the bandwidth matrix of
the kernel [6]. For isotropic kernel, H = σ2In , where In is an n-by-n identity matrix and
σ2 is a user-defined positive number. With this bandwidth matrix, the isotropic kernel has
the form:

()
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−=
∑
=−

2
1

2

22

2
exp2)(

σ
πσσ

n

i
in x

xK (2)

The bandwidth matrix governs the amount of smoothing, There is a bias-variance
tradeoff between small and large bandwidth. Small bandwidth corresponds to
undersmoothing, which has small bias and large variance. On the other hand,
oversmoothing, with large bias and small variance, results from large bandwidth selection
[13].

In image analysis, we treat observations as a set of samples drawn from a continuous
function, corrupted by noise. To separate the signal component from the noise component
using isotropic Gaussian kernel smoothing, the kernel is convolved with the signal,

dyyfyxKx
nR

H)()()(−= ∫µ . (3)

Theoretically, Gaussian kernel is desirable because it is continuously differentiable,
separable, and symmetric. In practice, care has to be taken in implementing a Gaussian
kernel because of its infinite support. We use the discrete, truncated version of the kernel,
as given in [6]:

)(
)(1)(

)(~

i
x

H

iiH
iH xK

xxK
xK

i

∑
Ω∈∀

Ω= (4)

where Ω is the constraint region. In nonparametric regression setting, this is called the
Nadaraya-Watson estimator [7].

Given observations Y(x), x ∈ M, heat kernel Kt(x,y) on geometric manifolds is governed

by the second-order differential equation f
t
f

∆=
∂
∂ , with the initial condition f(x,0) =

Y(x). ∆ is the Laplace-Beltrami operator. The solution of this PDE is

dyyfyxKtxf
M

t)(),(),(∫= (5)

For the simple manifold, M = ℜ, Kt(x,y) is equivalent to an isotropic Gaussian kernel
with bandwidth σ2 = 2t [11]. In other words, the result of the diffusion of initial data Y
for the time duration t = σ2/2 is similar to the result of the convolution of an isotropic
Gaussian kernel (σ2 = 2t) with the data Y.

The parametric expansion of the heat kernel has the form [11]:

() []m
m

m
t tyxtyxyx

t
yxdtyxP),(...),(),(

4
),(exp4),(10

2
2/1)(ψψψπ +++⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= − (6)

Assuming t is sufficiently small and the point x, y are close together, the heat kernel can
be approximated locally as [6]:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈ −

t
yxdtyxKt 4
),(exp4),(

2
2/1π (7)

It is obvious that the approximation resembles the form of isotropic Gaussian kernel with
bandwidth 2t. The only difference is that the Euclidean distance term in the exponent is
replaced by geodesic distance. Therefore, geodesic distance turns the Riemannian
manifold into a metric space, satisfying the usual properties, e.g., positivity, symmetry,
and triangle inequality. Analytically, the heat kernel in (7) is the kernel we attempt to
construct, of which the details are given in section 3.

One advantage of the diffusion smoothing is that it solves the problem usually
encountered with Gaussian kernel smoothing at the boundary. Fortunately, the cortical
surface is a compact manifold, and so the problem at boundaries is not applicable in our
specific case.

Another drawback of kernel smoothing that has been pointed out in [16] is the difficulty
in finding the appropriate value of the bandwidth to be used. One solution is to plot the
integrated squared error (ISE) between the smoothed data and the original signal. The
optimal bandwidth is identified as the global minima of the ISE plot. However, the
original, noise-free signal is rarely known in advance, which makes the ISE idea only
suitable for algorithm validations. Simonoff also suggests several other bandwidth
selection methods. One interesting method that exploits the geometry of the manifold is
called local-varying bandwidth, where distance from point x to its kth nearest neighbor
(for some fixed k) is used as σ2, results in more smoothing in the regions of low density.
In this region, distance from x to the kth neighbor would be large, and so as the
bandwidth. Unfortunately this local-varying bandwidth does not give satisfactorily
results, and some subtle features of the data are missed.

In practice, an alternative solution is called iterated kernel smoothing [6,7]. Argued by
induction, an iterated kernel smoothing formula is

fKfKKfK m
m

m ∗=∗∗∗=∗ σσσσ 4434421
...)((8)

This formula says that smoothing with large bandwidth to be achieved by iteratively
apply smoothing using smaller bandwidth. We make use of this interesting property in
our experiments in section 4.

2.2 Riemannian manifold and its polygonal representation

A Riemannian manifold (M,g) is a differentiable manifold with a family of smoothly
varying, positive definite inner products g = gp defined on a tangent space TpM for each p
∈ M [11]. The Riemannian metric tensors G = {g}ij is given as

ji
ji

ijp wvpgwvG ∑=
,

)(),(, where v and w belong to TpM.

Every manifold has its associated Riemannian metric, which enable us to define the
length of vectors and curves on the manifold. That, in turn, allows the computation of the
geodesic distance, as we cover in more details in the next subsection.

The 2-D Riemannian manifold of interest in our project is a two-dimensional cortical
surface. The polygonal representation represents the surface by a set of connected planar
polygons. The surface S is completely described by a set of F faces and V vertices, S =
{SF,SV}. Each row of the V-by-3 vertex matrix SV is the vector containing rectangular
coordinates of a specific vertex {vi}i=1,…,V , indexed by the row number. For example, the
coordinate of the 5th vertex (v5) is in the 5th row of SV. Each of the rows of the F-by-3
face matrix SF contains a vector of three non-repeated indices of vertex that comprises
the triangular face {fi}i=1,…,F. Figure 2 shows an example of the polygonal representation
of a simple manifold.

It is known that to accurately represent a smooth curve of the cortical surface, an order of
104 vertices are sufficient. Since the cortical surface has a topology of a sphere, we have
that 2V- F = 4 in order for the surface to be topologically correct [6].

To acquire the face matrix and vertex matrix, a high-resolution MRI of the subject’s brain
is input into an automated software FreeSurfer [9], which segments the structural MRI
data and reconstructs the 3-D topologically corrected triangular tessellation of the cortical
surface. Figure 3 illustrates the left hemisphere of the cortical surface obtained from
FreeSurfer.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

435
375
756
561
372
762
621

FS

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

388
386
4.2102.7

21211
5.2810
7.147
5.25.75.2

VS

Figure 2: An example of polygonal representation for a
simple manifold

2.3 Geodesic distance

Let the curve C ⊂ M connecting two points x and y be parameterized by γ: [0,1] → C,
With γ(0) = x and γ(1) = y. Then, the length of the curve is

∫=
1

0

2/1))('),('()(dtttgl p γγγ (9)

The geodesic distance d(x,y) is the shortest piecewise differentiable curve connecting x
and y [11]. Analytically, d(x,y) can be obtained by simply minimizing the function l(γ)
for ∀γ. This is a calculus of variations problem, which at times can be cumbersome. The
compactness of the manifold guarantees the solution of such problem exists [14]. In our
specific case, however, by representing the cortical surface with its polygonal
representation, we discretize the cortical surface and the corresponding functional data on
the manifold, and hence put ourselves in the realm of optimization problems over finite
state space, where vast body of literature exists. The next subsection gives a brief
introduction to dynamic programming, one of the well-known tools in optimization we
utilize in our kernel construction.

2.4 Dynamic programming

The dynamic programming technique is dated back to 1960s when Bellman pioneered the
idea [3]. The key concept of dynamic programming rests on the principle of optimality,
which states the following intuitive fact [4]:

Given an objective function

))(())(),((
1

0
NxkukxJJ

N

k
k Ψ+= ∑

−

=

where x(k) is the state of the system and u(k) is the decision to be optimized.
Jk is the cost at particular stage k of the optimization process, and Ψ is the terminal
cost at the last stage.

Figure 3: 3-D reconstruction of
the cortical surface obtained
from FreeSurfer

Suppose)1(),...,1(),0(*** −Nuuu minimizes the cost function J, and let x*(k) be
the trajectory mate of u*(k); i.e.,

)),(),(()1(*** kkukxfkx =+
Define a subproblem beginning at x*(k); k ≥ 0, with the objective

))(())(),((
1

NxiuixJJ
N

ki
is Ψ+= ∑

−

=

Then,)1(),...,1(),(*** −+ Nukuku also minimizes JS.

The idea of this principle is very simple. To exemplify, let’s say we would like to find
P*

AC, a shortest path to travel from the origin city A to destination city C. Suppose that
city B lies between A and C, and the shortest path from A to C passes through B. Then, it
is obvious that The optimal path from B to C, denoted by P*

BC, has to be a sub-path of
P*

AC (see figure 4). The principle of optimality can be proved by contradiction.

In the past years, DP has found success in wide range of applications, both in
deterministic and stochastic systems, for example, in inventory control, critical path
analysis, scheduling, or even in gambling strategies [4]. The example in the previous
paragraph is a simple version of the so-called shortest path problem, which use the total
traveling distances between cities as its cost to be optimized. It is important to note that
DP can be numerically solved in polynomial time, and is guaranteed to converge to a
globally optimal solution. These desirable properties make dynamic programming a good
candidate for our geodesic distance calculation. In section 3 we explain in details how
geodesic distance computation of points on the cortical surface can be formulated within
the dynamic programming framework.

3 Proposed kernel constructions

Recall that the isotropic heat kernel on the cortical surface is approximated as

)(
)(1)(

)(~

i
x

ii
i xK

xxK
xK

i

∑
Ω∈∀

Ω=
σ

σ
σ ; () ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−

2

2
2
1

2

2
),(exp2),(

σ
πσσ

yxdyxK . (10)

Note that although we are talking about heat kernel, t and σ can be used interchangeably.

Figure 4: city travel example. P*AC is displayed in
red, and P*BC is in green. It is clear that
 P*BC ⊂ P*AC.

In order to construct the truncated kernel, there are three parameters in equation (10) to
be specified, namely σ, Ω, and d(x,y). Appropriate selections of these parameters are
addressed in the construction steps below. Our heat kernel construction procedure can be
divided into three steps:

Step 1: Constraint regions identification – selecting Ω.
Step 2: Geodesic distance calculation – finding d(x,y).
Step 3: Kernel weights computation – choosing σ.

Next, we explain each step in details.

3.1 Constraint regions identification

Let Nm(i) denote a set of mth-order neighbors of vertex vi .

Definition 1: Vertex vj is a first-order neighbor of vertex vi if vi and vj share an edge.

Definition 2: Vertex vj is a second-order neighbor of vertex vi if vertex vk is a first-order

neighbor of both vi and vj; and vj is not already a first-order neighbor of vi,
for ∃vk ∈ N1(i).

Definition 3: Vertex vj is an mth-order neighbor of vertex vi if vertex vk is a first-order
neighbor of vj and an (m-1)th-order neighbor of vi; and vj is not already any
lower-order neighbors of vi, for ∃vk ∈ Nm-1(i).

In order to preserve the shape of the cortical surface, the vertices of the triangular
tessellation given by FreeSurfer are non-uniformly spaced. The constraint region Ωi of
vertex vi is defined to include up to 3rd-order neighbors, as illustrated in figure 5.
Mathematically, the constraint region is defined as the union of all triangular faces that its
corresponding vertices are either vi or its 1st-, 2nd- , and 3rd-order neighbors, i.e.;
Let each face be represented as],,[3,2,1, kkkk vvvf = . Then,

VijiNiNiNvvf
k

ijkki ,...,1,3,2,1)},()()({: 321, =
⎭
⎬
⎫

⎩
⎨
⎧

=∀∪∪∪∈=Ω U

The choice of the number of neighboring vertices to be included in Ωi is empirical. If Ωi

is too large, we would oversmooth the data. On the other hand, if Ωi is too small we
would undersmooth. The extent of the constraint region depends largely on specific
applications. Growing larger constraint region is achieved by adding more vertices from
higher-order neighboring set.

Figure 5: example of region B on the
cortical surface (zoomed-in) for the
truncated kernel. Green, red, and blue dots
denote first, second, and third neighbors of
the data point (black), respectively

If Ωi is such that only the first-order neighbors are considered, we arrive at a special case,
as studied in [7]. Chung has shown that large bandwidth can be performed using iterated
kernel smoothing formula. This eliminates the need for geodesic distance calculation.
Nonetheless, if the underlying function is very smooth, large number of iterations is
necessary, and as a result the computation would be less efficient than starting initially
with larger bandwidth. In the following section we give performance comparisons
between the kernel constructed using only 1st-order neighbors and our kernel, which is
constructed using up to 3rd-order neighbors, on cortical thickness measurements.

3.2 Geodesic distance calculation

As mentioned previously, if only traveling along edges is allowed, then the problem of
finding minimal path between points on a polygonal surface is equivalent to a discrete
optimization problem on graph. We now solve the problem using dynamic programming.

In DP set up, our graph is Ω, having finitely many nodes. The nodes in the space are all
the vertices vk ∈ Ω. Each pair of nodes has an associated cost C(i,j), which is defined to
be the length of the edge connecting vertices vi and vj , given in millimeters. If vi and vj
have no connecting edges (vi and vj not the 1st-order neighbors of each other) then
infinite cost, C(i,j) = ∞, is assigned. Let L be the total number of vertices in Ω. To
preserve our previous notations, nodes are renamed and re-indexed to be {n1,n2,…,nd},
where nd denotes the destination node. If the objective is to calculate the heat kernel at vf
on the cortical surface, then nd = vf and {n1,n2,…,nL-1} = {N1(f) ∪ N2(f) ∪ N3(f)}.

Since the costs are nonnegative, it is clear that the number of hops in the optimal path can
be at most L. The problem is formulated such that theoretically we always take L move
from ni to nd, i = 1,…,L-1. In actuality this corresponds to the possibilities of degenerate
moves, i.e., staying at the same node, since the situation of the optimal path passing every
node in the space rarely happens.
For i = 1,…,L and for k = 1,…,L-1, define [4]:

JL-1(i) = optimal cost for getting from i to d in one move.
Jk(i) = optimal cost for getting from i to d in (L-k) moves.

Then, the optimal cost for getting from i to d is J0(i). The dynamic programming equation
(DPE) is given by

{ })(),(min)(1,...,1
jJjiCiJ kLjk +=

+= ; k = 0, 1, …, L-2

and JL-1(i) = C(i,d) ; i = 1, …, L

Technical details of Matlab implementation for this DPE can be found in appendix A.

Now let’s qualitatively explain the algorithm above. The basic approaches are “thinking
backward” or “cost-to-go”. We begin by nothing that JL-1(i) are readily available, and
only ni ∈ N1(d) would have finite costs. Next, the first sub-problem is to find JL-2(i)
(taking only two hops from ni to nd), which involve new calculations for the costs of
moving from ni ∈ {N1(d) ∪ N2(d)} to any nodes in N1(j) in one hop. Then those are

combined with JL-1(i) for the resulting optimal cost of this sub-problem. Proceed with
JL-3(i), JL-4(i)…, until J0(i), which is a final solution for the original problem, is reached.
The solutions J0(i) for i = 1,…,L gives the kernel weights d(vi,vf) for vi ∈{N1(f) ∪ N2(f)
∪ N3(f)}. The process is repeated for all vk ∈ SV to complete the construction of the heat
kernel for the entire surface.

3.3 Kernel weights computation

Using the results from 3.1 and 3.2, we rewrite the formula for the Gaussian kernels on the
cortical surface as,

)(
)(1)(

)(~
j

v

jj
j vK

vvK
vK

ij

i

∑
Ω∈∀

Ω=
σ

σ
σ ; i = 1,…,V (11)

where () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−

2

2

2
1

2

2
),(

exp2)(
σ

πσσ
ji

j

vvd
vK ; ∀vj ∈ Ωi.

The only parameter left to be defined in Kσ(vj) is the bandwidth σ. It needs to be
sufficiently small in order for the weights of the kernel to be negligible outside Ωi.
However, if σ is too small, the weights would diminish for {vk} ∈ N3(j), and we would
not utilize the entire constraint region. In our kernel construction, the minimum distance
from the center vertex vi to its farthest neighbor within Ωi is found to be 6.32 mm, i =
1,…,V. We use the fact that approximately 99% of the area under a Gaussian curve,
N(0, σ2), falls within ± 3σ to constrain the bandwidth selection so that 3σ ≤ 6.32. We
pick σ = 2, which ensure that we utilize the entire region of Ωi and at the same time still
satisfy the first constraint that the tail region be negligible outside Ωi. Also note that since
6.32 is the minimum of all distances, there would be some Ωi that the kernel weights
decay at a faster rate, which imply that σ may be slightly too small. This consequence can
be avoided by applying iterated kernel smoothing.

After σ is selected, the final step is to substitute the values of σ and d(vi,vj) into equation
(11) to finally compute the kernel weights.

4 Experimental results

After the kernels have been constructed, we apply the Gaussian kernel smoothing to
cortical thickness measurements. The data is assumed to follow the additive model:
 Y(x) = µ(x) + ε(x)
where µ(x) is the true cortical thickness and ε(x) is a zero-mean Gaussian random field.

The smooth data is)()(~)(ˆ iii vYvKv ∗= σµ , i = 1, …, V.
The original thickness measurements and data histogram are shown in figure 6.

The cortical surface used in the experiment has 81920 faces and 40962 vertices. The
measurements are smoothed using two different kernels. First, we use our geodesic-based
heat kernel, which from now we termed geodesic kernel for convenience. The second
kernel is what we call the 1st-order heat kernel—a heat kernel derived using only 1st-
order neighbor information, as explained in [7]. The results from the two methods are
compared.

The left column of figure 7 shows the data after 4 iterations of smoothing using geodesic
kernel with bandwidth σ = 2, where it gives a decent amount of smoothing. Next we
would like to compare this result with the result from the 1st-order heat kernel. In order to
obtain the appropriate number of iterations for the 1st-order heat kernel that is comparable
in performance with the geodesic kernel result in some sense, we use the geodesic kernel
result as our reference and plot the total squared error between the two smoothed data
sets as a function of iterations, i.e.,
Let Dref(i) be the data value at vertex vi, obtained after 4 iterations of geodesic kernel
smoothing with σ = 2.
Let Dp(i) be the data value at vertex vi, obtained after p iterations of 1st-order heat kernel
smoothing with σ = 1.
Then,

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= ∑
=

2

1
)()(1min

V

i
prefpoptimal iDiD

V
p . (12)

Figure 6: Right column: Original thickness measurement overlayed on
the cortical surface. Left column: Data histogram.

The plot between the error, as given in the bracket of equation (12), and the number of
iteration p is shown in figure 8. From this plot we found the optimal number of iteration
to be 176. We then perform 176 iterations of 1st-order heat kernel smoothing on cortical
thickness measurement; the resulting smoothed data is shown in the right column of
figure 7.

It takes 1.8750 seconds to calculate all kernel weights and 2.5150 seconds for 4 iterations
of geodesic kernel smoothing with σ = 2. For 1st-order heat kernel smoothing, kernel
weight calculation takes 1.1090 seconds and 176 iterations of smoothing takes 16.2040
seconds.

Figure 7: Comparison of smoothing results obtained using geodesic kernel
(left) and 1st-order heat kernel (right)

Figure 8: Errors between geodesic kernel
result and 1st-order heat kernel result

The histograms of the results from the two kernel smoothing methods are also shown (see
figure 9). It is evident from the histograms that the smoothed data using geodesic kernel
is more Gaussian. It is also observed in figure 7 that the results between the two kernel
methods are not really similar pointwise. After trial-and-error, the result of 1st-order heat
kernel after 90 iterations gives the most visually equivalent result to the geodesic kernel
smoothing, as illustrated in figure 10.

Figure 9: Histograms of smoothed cortical thickness from geodesic kernel
smoothing and 1st-order heat kernel smoothing

Figure 10: Visually equivalent smoothing with geodesic kernel (left) and
1st-order heat kernel (right)

5 Discussions

The only computationally demanding part of our geodesic-based heat kernel construction
is the data pre-processing step, where current implementation required the neighbor
information to be stored in a specific format (see Appendix A). The pre-processing step
takes about 15-20 minutes per cortical surface. Nonetheless, it is important to note that
this pre-processing step has to be run only once per surface. Therefore, for applications in
image analysis where chronicle diseases or evolutional growth in one subject is
monitored over a long period of time, the computational efficiency of the smoothing
process would outweigh this pre-processing step. An improved version of this step is still
under development.

The experimental results show promising results of geodesic-based heat kernel
construction on cortical surface. The first advantage of the geodesic kernel over the 1st-
order heat kernel is its computational efficiency. Since geodesic kernel incorporates more
data points into each smoothing iteration, a few numbers of iteration are sufficient for the
smoothed data to become Gaussian. It is evident that the smoothed data after more than a
hundred iterations of 1st-order heat kernel does not have the desired Gaussianness and
still have clusters of peaks and valleys instead of a more globally smooth effect, as seen
in the result of geodesic kernel. In addition, the construction steps of geodesic kernel are
simple, intuitive, and easily extended. Its equivalent formulation to the widely-used
Gaussian kernel also suggests the application of this geodesic kernel to any existing
applications of Gaussian kernel in image analysis. The possible extension of the work
done in this report is the generalization to a case of an anisotropic kernel, as well as more
validation results in terms of performance analysis in comparison to other popular
choices of kernel.

6 References

1. Baillet, et.al. Electromagnetic Brain Mapping. IEEE Signal Processing Magazine:14-

30, November 2001.
2. Barnes, et.al. Quantification of the relationship between MEG and BOLD images of

brain function. IEEE workshop on Statistical Signal Processing, October 2003.
3. Bellman, R. Dynamic Programming. Princeton University Press, New Jersey, 1957.
4. Bertsekas, D.P. Dynamic programming: Deterministic and Stochastic Models.

Prentice-Hall, New Jersey, 1987.
5. Chen J., and Han, Y. Shortest Paths on a Polyhedron. Proceedings of the 6th annual

symposium on Computational geometry: 360-369, 1990.
6. Chung, M.K. STAT992 lecture notes, spring 2004.
7. Chung, M.K and Taylor, J.E. Diffusion Smoothing on Brain Surface via Finite

Element Method. 2004 IEEE International Symposium on Biomedical Imaging.
8. Chung, M.K. PhD. Thesis. McGill University, Montreal. 2001.
9. Dale AM, Fischl B, Sereno MI, Cortical surface-based analysis I: Segmentation and

surface reconstruction. Neuroimage 1999 Feb;9(2):179-94

10. Dijktra, E.W. A note on two problems in connection with graphs. Numer.Math.,
vol.1:269-271, 1959.

11. Lafferty, J. and Lebanon, G. Diffusion Kernels on Statistical Manifolds. 2004
Technical Report, Carnegie Mellon University.

12. Mitchell, J., Mount D., and Papadimitriou, C. The Discrete Geodesic Problem. SIAM
journal on Comp., vol.16 (4):647-668, 1987.

13. Ramsay, J.O. and Silverman, B.W. Functional Data Analysis. Springer-Verlag, New
York, 1997.

14. Rosenberg, Steven. Lectures on the Laplacian on a Riemannian Manifold. Keio
University, 1993.

15. Sharir, M.and Schorr, A. On Shortest Paths in Polyhedral Spaces. SIAM journal on
Comp., vol.15(1):193-215, 1986.

16. Simonoff, J.S. Smoothing Methods in Statistics. Springer-Verlag, New York, 1996.
17. Wolfson, E. and Schwartz, E.L. Computing Minimal Distances on Polyhedral

Surfaces. IEEE Trans. on Pattern anal.and Mach. Intel., vol. 11(9):1001-1005, 1989.

Appendix A – Matlab implementation of geodesic distance calculation

Let M1 be the maximum number of 1st-order neighbors for any vi, i = 1,…,V.
Let M3 be the maximum number of neighboring vertices of any vertex, counting the 1st-,
2nd- and 3rd-order neighbors separately and taking the maximum of the three.

The first neighbor information obtained from function NMIgetmesh is stored in the
[VxM1] matrix sNbr.

1) This is the data pre-processing step. By calling function GetNeighbor, two variables
are calculated, namely Nid and Ndist.
Ndist is a [VxM1] matrix; each element Ndist(i,j) of Ndist is the pairwise distance
between vi and its jth 1st-order neighbor, whose index is given by the element sNbr(i,j).
Nid is a [Vx3xM3] 3-dimensional matrix, with the ith [3xM3] sub-matrix stores the
neighboring information needed for kernel weights calculation for vi. The first row is the
indices of the 1st-order neighbors of vi, the second row the 2nd-order neighbors, and the
third row the 3rd-order neighbors, respectively.

2) Now we will explain how to find the geodesic distance for EACH vertex vi.
The function ShortestPath is called. This function reads the neighboring information
from the ith [3xM3] matrix of Nid and finds the corresponding pairwise distances between
vi and all its neighbors. The initial “distance” matrix is constructed as follow.
Note that since M3 is the maximum number of neighbors, some elements of the [3xM3]
matrix would be zeros. Let m be the total number of non-zero elements. vi and all
neighbors are re-indexed as {v1,v2, …, vm+1}. Then, construct an [(m+1)x(m+1)] matrix S
and initialize S with the cost C(i,j), as described in section 3.2.
Remarks: S(i,i) = 0, i = 1,…, m+1, since the distance from one node to itself is zero.
 S(i,j) = S(j,i).

3) the initial distance matrix S is passed to the function DP. The pseudocode of DP is

for i = 1:m+1
for j = 1:i

S(i,j) = min {S(i,k) + S(k,j)}
for all k such that node i connects to node k.
S(j,i) = S(i,j)

end
 end

4) The entries of S are updated by the function DP to be the shortest distances from vi to
all the neighbors. Then we take the entries of S and create the resulting matrix SP, which
has a one-to-one mapping to Nid; each entry of SP corresponds to the shortest distance
from vi to its neighbors, whose indices are given by Nid. Lastly, SP is passed to the
function Kernel for kernel weights calculation.

