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Abstract

In this project, I propose the application of a dis-
criminative framework for segmentation of a T'1-
weighted magnetic resonance image(MRI). The
use of Gaussian mizture models (GMM) is fairly
ubiquitous in processing brain images for statis-
tical analysis. This generative framework makes
several assumptions that restricts its success and
application. GMM assumes there is no spatial
correlation when classifying tissue type, and also
assumes each class of tissues is described by one
Gaussian distribution. While the model is simple
and quick, both assumptions are often violated
leading to poor performance. Conditional Ran-
dom Fields (CRF) avoid these assumptions by
learning to discriminate between different tissue
classes without assumptions on the class condi-
tional density distribution. Additionally, CRFs
allow arbitrary features of the data to be instan-
tiated, allowing spatial correlations to be added in
addition to other rich features other than vozel
intensity. Results show that future work on the
model is needed to enhance the model and im-
prove the quality of training data

1 Introduction

Magnetic Resonance Imaging (MRI) is at the
heart of medical imaging technology, providing
high resolution three dimensional images of soft
tissue. The large quantity of data provided by
MRI for brain imaging in particular aids statis-
ticians and medical professionals in disease di-
agnosis and functional understanding of the hu-
man brain. This large quantity of data, however,

requires sophisticated processing algorithms to
help analyze the images. Several of these pro-
cesses remain as imperfect bottle necks in MRI
analysis. One such bottleneck is tissue segmen-
tation of the brain. Of particularly interest to
this study is the identification of three main tis-
sue types in the brain: grey matter(GM), white
matter(WM) and cerebrospinal fluid(CSF). This
task has implications on a wide array of ex-
ploratory studies and visualization tools of the
brain.

Manual segmentation of the brain by experts
is an extremely time-consuming process and ar-
bitrary. In addition, inconsistencies between do-
main experts are “non-reproducible, and also are
impractical for the large amounts of data re-
quired for meaningful statistical analysis” [9].
This motivates the need for computational meth-
ods to automatically segment the brain by clas-
sifying each voxel as being a member of one of
the three main tissue types. The range of auto-
mated methods can be roughly grouped into two
camps: surface based geometric methods and
intensity based statistical methods. Geometric
methods attempt to model the surface between
tissue layers directly as opposed to classifying
voxel by voxel. Methods in this category in-
clude deformable surface models[21], thin plate
splines[6], and level set methods[19][20].

Intensity based methods center around
the classification of individual voxels and
include methods such as neural network

classifiers[22][23], k-nearest neighbor classifier[9],
and Gaussian mixture modeling (GMM)[7]. The
Gaussian mixture model method is widely used
and is implemented in the SPM software pack-



age!. The package uses the clustering algorithm
in which the intensity values are fit to set of
Gaussian distributions, each representing a class
of tissue. The model suffers from an assumption
of spatial independence of voxel intensities as
well as a requirement to register the brain image
to a spatial prior map. Spatial correlation was
encoded by extending GMM to Hidden Markov
Random Field (HMRF) model[5]. This model
maintains the assumptions on the Gaussian
class conditional density, but conditions the
classification of a voxel on it’s neighbors in the
image. While an improvement over the GMM,
HMRF still maintains a few shortcomings.
First, HMRF model is particular sensitive to
initial parameter estimation since noisy data
can pose many local maxima in the parameter
search space. Second, HMRFs assume a class
conditional normal distribution for the intensity
values. This assumption seems ill advised with
problems such as partial volume effects and the
bias field problem confounding the distribution
of intensities. Third, HMRFs still assume the
intensities are generated via a normal function
dependent only on the label at a voxel. While
tissue classes are spatially correlated, the data
is not. This limitation is seen in the fact that
HMMs (and HMRFs by extension) are unable
to model overlaps and non-independent features
of the classes and data. Partial volume effects
and bias fields lead to such non-independence
and overlaps. Lastly, HMRFs belong to a set
of generative classifier algorithms that model
the generation of the data. While this leads to
intuitive models with neat parameter estimation
functions under criteria such as maximum
likelihood, they in general have higher asymp-
totic error than algorithms that directly learn
the posterior distribution of the classes given
the data(see [10] and [2] for a discussion on
generative vs. discriminative algorithms).

This paper explores the use of Conditional
Random Fields (CRF)[1][2][3] in brain tissue seg-
mentation. CRFs discriminate the tissue types
without making assumptions about the distri-
bution of the data. In addition, by not mod-
eling dependencies in the data, CRFs allow us
to incorporate more information than just inten-
sity values of a voxel in learning tissue classifica-

'"URL: http://www.fil.ion.ucl.ac.uk/spm/

tions, such as correlating the data with neighbor-
ing voxel classification and intensities. Lastly,
CRFs learn to discriminate classes using train-
ing data - previously labeled images. This re-
places a spatial prior map and can accurately
portray the high amount of variation among im-
ages. Prior work has show CRFs to outper-
form generative models in tasks related to nat-
ural language processing[1][2], bioinformatics[4],
and vision[11][12][13]. The results of this project
show that the formulation is incomplete, but
that CRFs perform fairly well statistically rel-
ative to HMRF's but leave more to be desired
upon visual inspection. Further work on devel-
oping feature space and normalizing the training
data should show improvements in performance.

2 Related Work

2.1 Finite Gaussian Mixture Model

GMMs embody one of many similar parametric
statistical approaches. They assign probability
values on the class of an individual voxel, usu-
ally using only the intensity value of that voxel.
All of these statistical methods use probabilis-
tic inference criteria such as the maximum like-
lihood estimate (MLE) or maximum a posteriori
(MAP) to classify. The difference lies in how
the density function for the pixel intensities is
formulated[14].

The Gaussian mixture model employed by
SPM assumes that MR images consist of a fi-
nite number of different tissue types, each rep-
resented by a cluster from which each voxel in
the image is generated. Each of these clusters is
described by a normal distribution with its own
mean and variance. The density function is thus
formulated as a mixture of normal distributions,
each with a mean and variance. Each individual
Gaussian represents a cluster - a tissue type in
this application[15]. Let us begin with a math-
ematical definition of the framework. We will
define statistical models in a probabilistic frame-
work. The task is to model the joint probability
of the data and tissue class.

p(y,x) = ] pys, zs)

sel3

(1)

where s is an index over voxels on image of
dimensions I by I by I (just to denote that we



are in 3D, the dimensions are not restricted to be
the same) and ys € £ where L is the set of pos-
sible labels GM, W M, C'SF, other of voxel s and
s is the feature set of voxel s. As the notation
indicates, the joint probability breaks piecewise
into the number of voxels. In the GMM, we as-
sume that each intensity value is generated by
it’s class type, so we condition on ys

(2)

The first probability is the class conditional
density function, which for GMMs is a Gaussian
function. The second probability is a prior on
each tissue class, or the mixing parameter. We
calculate the marginal probability over x

P(Ys, Ts) = p(@s|ys)p(ys)

p(xs)0) =

> p(Ys

el

plas|Ys=10)  (3)

where the last term is the class conditional
density function dependent on the parameters 6

p(zs|Ys =€) = f(xs;00) (4)

In this case, the function is a Gaussian, 6, =
(¢, 0¢) and

1 Ts — p)?
f(zs;00) = exp <( 52 éw) ) . ()
\/2mo? 0y
To classify, we simply take the maximum value
for ys
= {|zs) (6)

ys = arg max p(¥;

where

p(s|Ys = £,00)p(Ys = 0)

YverP(@s|Ys =0,0p)p(Ys =)
(7)

This algorithm is considered to be unsuper-
vised - it does not have previously labeled exam-
ples to learn the classes. Therefore, we cannot
directly employ MLE or MAP to determine the
best parameters for our mode. Ashburner and
Friston[7] describe their use of the Expectation-
Maximizationem algorithm. EM is an iterative
algorithm which alternates between estimating
the class variables ys and determining the model

p(Ys = lzs) =

parameters 6 by maximizing the likelihood of the
model. EM is guaranteed to converge to a local
maximum for the parameters, but will not neces-
sarily find the correct solution. The algorithms
simplicity lends to its popularity.

GMM, however, suffers from not utilizing all of
the information available. It essentially throws
all of the data into a histogram, and thus loses
any information in the local neighborhood that
could identify noise versus signal. To distribute
the clusters close to the tissue class, the image
needs to be registered to a prior probability map
of what tissue type a voxel belongs to based on
its location. This prior map helps introduce spa-
tial correlation. But it also assumes the brain
image is normal and will fit the probability map.
If there is any deviation, tissue classification will
be incorrect[5][9].

2.2 Gaussian Hidden Markov Ran-
dom Field

To address the problem of ignoring spatial in-
formation, a Hidden Markov Random Field[5]
model was applied to the segmentation task. An
HMRF is a stochastic MRF generated process
whose state sequence is unobserved. It is more
general than a Hidden Markov Model, whose
state process is a Markov chain. The FSL? pack-
age has an implementation of the HMRF which
outperforms the GMM. The intuition behind in-
troducing spatial correlations is that neighboring
voxels are expected to have the same classifica-
tion and similar intensities. GMMSs assume the
second assumption holds and thus implies that
neighbors will get the same label. In noisy im-
ages, however, neighboring voxels may have the
same label, but GMMs won’t capture this since
they do not have similar intensities. HMRFs
model the distribution of labels for a voxel con-
ditional upon its neighboring set in addition to
the data. This additional set of parameters place
the voxels features in context of its surroundings.

The HMRF model differentiates from GMM
in eq. 2. We extend to constrain parameters on
neighbors

P(Yss Ts) = p(2s|Ys)P(Ys |Yn(s)) (8)

2URL: http://www.fmrib.ox.ac.uk/fsl/



where 7(s) is the set of neighbors of pixel s.
The marginal of zs from eq. 3 becomes

P(@s|Yn(s), 0) = D p(Ys = £ Yr(s))- f(5:02) (9)
ter

where Y7 (4) is a configuration over the neigh-
bors of s. Notice the only change is in the first
factor, where we now have a different mixing pa-
rameter for each configuration of neighbors for
each label. The density for the generation of
data f(xs;0p) is the same as for the GMM. This
model is the Gaussian hidden Markov random
field(GHMRF) that is implemented for FSL. It
should be clear that a degenerate form of the
GHMRF where 7(s) = 0 yields the GMM.

For classification, we extend eqs 6 and 7 to
incorporate the constraints on s

Ys = arg I?eag(p(ys = l|xs, Yw(s)) (10)

where

p(}/s = g’xS)Yﬂ'(s)) =

p(xs|Ys = £,00)p(Ys = £|Yr(s))
Zé’eﬁp(xs|ys =/, 0@’)p(Y9 = €/|YTI’(S))

Zhang et al.[5] extend the EM framework to
learn parameters for the model similar to be-
fore, where we add in parameters for conditional
probability of the tissue class given the neigh-
bors. They prove that the HMRF model is much
less sensitive to noise than the GMM. Empirical
studies show that incorporating spatial correla-
tions does create smoother results[8].

One difficulty with the algorithm lies in how
much to weight the neighboring pixels and which
pixels to include. Too high of a weight and
images are overly smooth, too low and they
became equivalent to a model lacking spatial
constraints. Another problem with the HMRF
model is the initialization of parameters. In
noisy data, the EM search will hit many local
maxima that can easily be fitting the noise as
opposed to the signal. This means the initial-
ization of the cluster parameters is a critical
step. The use of a prior probability map, as
discussed above, creates many issues when deal-
ing with non-standard populations or deviations
in brain structure. The HMRF algorithm uses

(11)

a discriminant threshold technique[17] to maxi-
mize interclass variance and minimize intraclass
variance. The problem is that the classes are un-
known, and thus the prior probabilities become
equivalent to the simple histogram based tech-
niques HMRF is trying to improve upon. This
is demonstrated in results obtained from other
studies by the high variability in results from
HMRF[18]. Another limitation of the model is
that it assumes there is one normal distribution
for each label. In addition to evidence that some
tissue class intensity values do not behave nor-
mally but Rician[7], partial volume effects (the
presence of multiple tissue types in a voxel) re-
sulting from discrete sampling of the image blur
the line between tissue types and cannot be ex-
plained with one Gaussian distribution. In addi-
tion, the lack of normalization across an image
means that the distribution of white matter in
one slice maybe vastly different than in a slice
further away. Many models attempt to solve this
with bias field correction, but methods are not
perfect[5]. In light of these concerns, a Gaussian
class conditional density assumption may not be
optimal.

3 Model

3.1 Conditional Random Fields

An extensive review of CRFs is available in[2].
CRFs are a conditional distribution over the
classification given the input data. The goal of
the segmentation task is to determine the pos-
terior probability of the tissue classes in the im-
age. This is given in eq. 11, where we see that
the model constraints are built into a distribu-
tion on the observed data. This is a generative
framework since we attempt to model functions
of the class labels that most likely generated the
data p(zs|ys). Rather than learning the parame-
ters for the data density function, discriminative
algorithms learn the posterior directly since that
is what is really required.

CRFs are an example of this discriminative
framework. Conveniently, every generative algo-
rithm has a discriminative pair. The simplest
CRF is a linear-chain model - a pair to the Hid-
den Markov Model, which holds a first order
Markov assumption in which the label y; is de-



pendent on the label at y;_1.

To generalize for medical imaging, we will ex-
tend the model to an arbitrary random field
by converting the HMRF model. We will refer
to two dimensions, although the notation and
model is generalizable to a three dimensional
model.

To convert an HMRF to a CRF, begin with
eq. 8. Let us convert each of these parameters
into a binary feature represented as fx(y,v’, x).
Each feature function has an associated weight
M. We will constrain features to be have three
inputs: a scalar ys, a vector Yr(s) and a vector x.
Note that each input is an instantiation over that
variable, and that the last feature represents an
arbitrary set of intensity values not just 5. The
first term of eq. 8 is the probability of the data
given the class. This can be represented as

= 0(ys, £)6(zs,1) (12)

fei (ys7 Yr(s)> s)
where § is the delta function, returning 1 if
the parameters are equal and 0 otherwise. For a
given voxel, the only feature function of this set
that will be true is when the intensity value is ¢ €
) where 2 is the range of values for intensities.
A gives of the weight of label ¢ with intensity
i. Note that there will |£| X |®| number of such
feature functions. The second half of eq. 8 is the
distribution of class labels give the neighborhood
of class labels. This can be broken down into
fffl(y& Yr(s) l‘s) = 5(y87 E)é(yw(s% El) (13)
each with an associated Ay. By plugging
in these factors and modifying to traditional
mathematical notation we obtain the feature

function defined HMRF model equivalent to eq.
8

p(y,x) =

1

Z joint

K
exp Z Z Z/\kfk(ySaYS’axs)

s€l3 s’'em(s) k=1
(14)

where Zj,ne is a normalization constant.
To transform our model into a discriminative
framework, we condition on x by dividing by
the marginal of z.

p(ylx) =

exp {23613 ZS/Eﬂ'(S) Zszl )‘kfk (ysa Ys, Xs)}

Ey/ exXp {EsEIS Zs/eﬂ(s) Zi(:l )‘kfk(y.,s7 y;’axs)}
(15)

which reduces to our CRF model

p(ylx) =

K
%GXP YD D Mfulysyenxs) ¢ (16)

seld s'em(s) k=1

There are two key differences in eqs 8 and 16.
The first is that we are no longer modeling the
joint probability of the data and class. The prob-
ability of observing the data is irrelevant since
we want to produces a model of the likelihood
of class combinations. The second is that the
feature functions can be defined in an arbitrary
sense. HMRFs are constrained two features - the
class conditional density and the label correla-
tion to its neighbors. CRFs allow us to introduce
new features such as parameters tied to multiple
intensity values or intensity functions dependent
on neighboring values and labels. This allows
complex dependencies to be modeled.

3.2 Features

The key asset to a discriminative framework is
that modeling additional dependencies is not in-
tractable as is the case with most generative al-
gorithms. For this project, only a small subset
of features was introduced, but many more are
suggested in the future work that could vastly
improve performance of the model. The follow-
ing sets of features were defined on the dataset:

e Correlation of label to intensity at position

s (from GMM)

e Correlation of label to neighbor labels (from
HMRF). For this project, neighbors were
defined on a 2D plan as the voxel to the left
(i-1), right (i4+1), up(j+1) and down(j-1).
Diagonally connected labels were removed
for simplicity. In addition, the large size of
the graph and presence of a large amount
of “non-matter” lead to the omitting of fea-
tures including positions with no intensity
value.



e Correlation of label neighbor intensity val-
ues. Neighbors defined as above.

In addition, the following features were planned
for testing, but could not be included due to
tractability and project time constraints:

e Correlation of label to gradient values.
e Correlation of labels across modalities

e Correlation of labels to slices above and be-
low the current plane.

e Other features to help account for unnor-
malized data and biases in the intensity dis-
tribution.

3.3 Outputs

The output labels of the CRF model were one
of four possibilities, as based on the training set.
The labels for y are chosen from:

e Other - the default state of the system, de-
scribes voxels that do consist of brain matter
or are unidentified in the image.

e GM - Gray Matter tissue.
e WM - White Matter tissue.

e CSF - Cerebral Spinal Fluid.

3.4 Learning and Inference

While the addition of a large set of features
can aid in learning patterns of brain tissue dis-
tribution, they also increase the computational
complexity of the model.
ing the parameters A becomes difficult. Sutton
and McCallum (2006)[2] describe many approx-
imate learning methods that reduce complexity.
L-BFGS is a limited memory version of a quasi-
Newton approximation method that maximizes
the parameters according to an approximation of
the actual problem. In practice, such a learning
procedure is tractable and quite effective, and
was used in this project. Inference is done via
a standard Viterbi algorithm whereby the most
likely path is chosen through the model by choos-
ing the maximum score at each voxel step.

In particular, learn-

3.5 Implementation Issues

MALLET? provided the implementation of the
CRF graphical model as well as the necessary
learning and inference procedures required of
this project. Specifically, templates for abstract
graphical models is available in the GRaphical
Models in MALLET (GRMM) distribution. The
codes was extended to handle two dimensional
data (although tractability become an issue as
the optimization algorithms are designed with
sequential data in mind). In addition, to sim-
plify learning, intensity values were discretized
into one of 20 bins equally dividing the intensity
value range.

4 Experimental Methodology

The 20 normal MR brain data sets and their
manual segmentations were provided by the
Center for Morphometric Analysis at Mas-
sachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/. This
is the same dataset used in validation of many
segmentation techniques including thin plate
spline[6] and HMRF[5], although the authors of
the HMRF paper do not provided quantitative
analysis since they claim there are flaws in the
data. From the data description: “The coronal
three-dimensional T1-weighted spoiled gradient
echo MRI scans were performed on two differ-
ent imaging systems. Ten FLASH scans on four
males and six females were performed on a 1.5
tesla Siemens Magnetom MR System (Iselin, NJ)
with the following parameters: TR = 40 msec,
TE = 8 msec, flip angle = 50 degrees, field of
view = 30 cm, slice thickness = contiguous 3.1
mm, matrix = 256x256, and averages = 1. Ten
3D-CAPRY scans on six males and four females
were performed on a 1.5 tesla General Electric
Signa MR System (Milwaukee, WI), with the
following parameters: TR = 50 msec, TE = 9
msec, flip angle = 50 degrees, field of view =
24 cm, slice thickness = contiguous 3.0mm, ma-
trix = 256x256, and averages = 1.” Voxel in-
tensities were squeezed into the range from 0 to
255 and then binned for this experiment. The
skull was removed from each image. Also pro-
vided with the IBSR dataset was a manually seg-

SURL: http://mallet.cs.umass.edu/index.php/Main_Page



mented map, used for training. The positions of
the brain were normalized, but otherwise left un-
transformed.

5-fold cross validation was performed to an-
alyze the quality of the CRF model. The im-
ages were divided into groups of 4 and then each
group was tested on a model built with the other
4 groups providing the training data. Since the
FSL algorithm is unsupervised, each image was
processed on its own. The middle horizontal slice
of the brain was analyzed for both algorithms.
Each image was 256 along one dimension and be-
tween 50-65 in the other. FSL’s Fast algorithm
was run with default parameters(3 tissue types).
Images 17 and 18 were removed due to clear de-
fects in the scans. To compare the methods, I
used two statistical measure of similarity to mea-
sure the overlap between the algorithm output
and the “gold standard” segmentation. The first
measure is the kappa index which ranges from 0
to 1 with 1 being complete agreement

|Slﬂ52‘

S1,52) = 25 211221
ri( ) 1S1] + [Sa]

(17)

where S7 and S5 are the set of voxels with a cer-
tain property. In this experiment, the property
will be GM or WM. |S| it size of set S. The
second index is the Jaccard index which ranges
from 0 to 1, with 1 being complete agreement.

. |Sl N 52‘

J(S1,52) 5,05,

(18)

To obtain the discrete classification of both al-
gorithms, we use the Viterbi algorithm for CRFs
and the binary maps produced by FSL for HM-
RFs.

Provided with the dataset was an unpublished
evaluation of common algorithms. The perfor-
mance can be seen in the Jaccard index values
for GM 1 and WM 2. Of importance is the per-
formance of the experts; these low values indi-
cate that the gold standard segmentation should
be taken with a grain of salt since there was a
large amount of variation between experts.

5 Results & Discussion

The results from the experiments are shown in
Table 1 and 2. As can be seen in the data, CRFs
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Figure 1: Jaccard Index plot ranked from hard-
est to easiest subject for multiple segmentation
algorithms, Gray Matter

outperform HMRFs across the board in identi-
fying gray matter in the images. The reverse is
true for white matter. Table 1 highlights in bold
the higher performing algorithm, and CRFs out-
perform in 19 out of 20 for GM while HMRF's
outperform in the same ratio in WM. It should
be noted that in comparison to figures 1 and 2,
both algorithms outperform those tested by the
IBSR. Similar results are obtained when looking
at the Kappa values in Table 2.

There are several different explanations for the
results of the experiment. First, in general WM
is harder to identify based on empirical results.
All algorithms achieve lower Jaccard Indexes in
identifying the white matter. This could be due
to the fact that it is present in lower quantities
and thus any errors are magnified, whereas in
gray matter, a misclassification is not as severe.
Second, since the data contains a greater pro-
portion of GM points (about 3 to 1), the CRF
model is overfitting the data and thus learning
to err on the side of GM when in doubt. This
can be solved by adding a penalty cost to the
Viterbi algorithm, something that has worked in
past projects to get a better understanding of
the tradeoff between two classes. Rather than a
hard-max, we classify a voxel as GM only if its
probability is greater than the probability of WM
by a certain constant that can be tuned. Last,
this could be a case of oversmoothing, where the
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Figure 2: Jaccard Index plot ranked from hard-

est to easiest subject for multiple segmentation
algorithms, White Matter

constraints introduced force the labels towards a
state of lower entropy. In this case, classification
would tend towards GM since they form larger
cluster broken apart by tracks of white matter in
the images used. This seems to be the most likely
answer since the number of retrieved instances of
WM is roughly equal the actual number of WM
voxels.

Figures 3 and 4 show that oversmoothing is a
problem in both HMRFs and CRFs. In inspec-
tion of visual images, the CRF protocol seems to
fail to produce quality segmentations. In many
cases, the first few iterations match the data well,
but then successive iterations tend to become
globular and actually achieve worse qualitative
performance despite an improvement in quan-
titative statistics. CSF isn’t even identified in
most images. This indicates that the CRF in
the current framework is inadequate to handle
image segmentation. There are several reasons
to explain poor performance.

The first set of problems arises from the
dataset. Asnoted in other papers [5], the quality
of data provided by the IBSR is fairly poor. 2
images were already noted for clear defects in the
scan images. The intensity values were nowhere
near uniform throughout the images - a pitfall
that CRFs would experience since they are try-
ing to generalize across images as opposed to
HMRFs which attempt only to generate the cur-

Sub. GM WM

No CRF HMRF | CRF HMRF
1 0.712  0.756 || 0.392 0.622
2 0.700  0.646 0.447  0.489
3 0.670  0.538 0.522  0.548
4 0.688  0.625 0.453 0.532
) 0.811  0.653 0.450 0.542
6 0.701  0.635 0.576 0.619
7 0.699 0.611 0.621 0.623
8 0.621  0.480 0.418 0.537
9 0.684  0.588 0.309 0.513
10 0.745 0.516 0.389 0.423
11 0.736  0.693 || 0.451 0.431
12 0.602  0.577 0.532 0.543
13 0.776  0.754 0.508 0.571
14 0.746  0.713 0.480 0.541
15 0.651  0.562 0.311 0.461
16 0.675  0.530 0.444  0.499
19 0.633  0.569 0.357 0.436
20 0.540 0.515 0.502 0.592
Mean || 0.688  0.562 0.453 0.500

Table 1: Jaccard Index for each subject, Gray
Matter(GM) and White Matter(WM)

rent images. Second, the segmentation provided
is assumed to be ground truth. In actuality, the
agreement between segmenters (compare the 6
amongst each other) yields a Jaccard Index of
0.876 and 0.832 for GM and WM respectively.
Thus, training on these imperfect classifications
is risky.

The second set of problems comes from the
CRF algorithm itself. The features used were
discretized binary features, thus destroying any
relative information between intensities. Many
extensions exist to make CRF conducive to nu-
meric features, but further work on modeling
these distributions needs to be done. Most CRF
algorithms have been validated on text datasets
and thus are rarely posed with ordered features.
Second, the rich feature set capability CRF's that
are often cited as the main attraction for the
model were ill-exploited in this project. A bet-
ter understanding of common vision techniques
and texture extraction would aid in developing a
better set of descriptors for images. Many suc-
cessful vision techniques using CRFs use meta
information such as multiscale features to aid
in connecting multiple regions of an images[13].



Sub. GM WM
No CRF HMRF | CRF HMRF
1 0.832 0.861 | 0.563 0.767
2 0.823 0.785 | 0.618  0.657
3 0.803  0.700 | 0.686  0.708
4 0.815 0.770 | 0.623  0.694
S 0.895 0.790 | 0.620 0.703
6 0.824 0.777 | 0.731  0.765
7 0.823  0.759 | 0.766  0.768
8 0.766  0.649 | 0.589  0.699
9 0.812  0.741 | 0.472 0.678
10 0.854  0.681 | 0.560  0.595
11 0.848 0.819 | 0.622  0.602
12 0.752  0.732 | 0.694 0.704
13 0.874 0.860 | 0.674 0.727
14 0.855 0.833 | 0.649 0.702
15 0.789  0.720 | 0.475 0.631
16 0.806  0.693 | 0.615 0.666
19 0.775  0.725 | 0.526  0.607
20 0.701  0.680 | 0.668  0.743
Mean || 0.814 0.754 | 0.620  0.690

Table 2: Kappa Index for each subject, Gray
Matter(GM) and White Matter(WM)

Probably the biggest contributor to deficient per-
formance is the size of images. The graph for
one images is extremely large, while the fea-
ture space is manageable. This is in contrast
to NLP tasks where the graph is relatively small
(on the order of words or sentences) but the fea-
ture space is large (huge dictionary). This makes
inference a difficult task and favors oversmooth-
ing of the data in iterative maximum likelihood
steps. When a graph is highly connected, inven-
tive algorithms need to be put in place to prevent
overfitting. There exists literature on loopy be-
lief propagation techniques for images that could
aid in learning parameters and inference[24]. In
addition, sampling techniques such as particle
filtering[25] could be used to provide better in-
ference and classification than Viterbi which is
a dynamic programming approach. In addition,
partitioning the image space into small overlap-
ping regions using a hierarchical graphical mod-
eling approach would allow local inference to be
exhaustive, but limit the information transgress-
ing the rest of the graph to be infrequent and
manageable.
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Figure 3: Segmentation image of Subject 2.
From top-left clockwise: original skull removed
intensities, gold segmentation with WM being
dark red(254) and GM orange(192), CRF seg-

mentation, Fast segmentation

6 Conclusions and Future

Work

As the results indicate, there is room for im-
provement. While the features used help de-
velop information, other features and structural
changes may help model the problem better.
Many of these improvements are discussed above
and include gradient orientation and magnitude
features as well as features to help handle bias
fields and partial volume effect. Also, work needs
to be done to speed up training and inference. In
the experiments run, it took 24 hours to run just
2 or 3 iterations of one fold on a modern high
speed computer. Many of the suggestions for in-
ference (sampling and loopy belief propagation)
and reduction of scale(hierarchical models, par-
titioning of images) would definitely improve run
time.

Processing of the images needs to improved
to normalize features across subjects and to also
account for variability in voxel thickness. A
neighbor along a dimension with 1.00mm thick-
ness is closer than a neighbor on a dimension
of 3.00mm thickness and thus should have more
weight in the clique of a voxels neighbors. In ad-
dition, new training sets thare are more stable
and modern should be utilized. The BrianWeb
simulator? provides images simulated by an ad-

YURL: http://www.bic.mni.mcgill.ca/brainweb/
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Figure 4: Segmentation image of Subject 3.
From top-left clockwise: original skull removed
intensities, gold segmentation with WM being
dark red(254) and GM orange(192), CRF seg-

mentation, Fast segmentation

vanced algorithm that should have been the ba-
sis test for this model before looking at real data.
The worry is that simulated data isn’t ideal for
a trained classifier, but it still should provide
a foothold for further exploration into improv-
ing the model. In addition, the IBSR recently
added 18 new brain images whose quality is bet-
ter. Testing was not completed in time for the
project, but the results will be available shortly.
The resolution is much higher thus making train-
ing even longer for these images.

Conditional Random Fields provide a discrim-
inative framework for which we can segment
brain tissue. Compared to similar methods such
as GMM and HMRF, they provide several im-
provements. They do not assume any density
function for the data and thus are free from
the errors of assuming a Gaussian distribution
when factors such as partial volume effect and
bias fields affect the data. Second, CRFs can
use training data to infer probability estimates
and thus do not have to rely on templates and
heuristics for prior probabilities that can error
prone with unnormalized images. CRFs also
do not need to be registered like some GMMs
do. Lastly, since CRFs do not need to model
dependencies in the data like generative algo-
rithms do, we are free to add additional features
to our dataset to uncover more modalities than
just one Gaussian per tissue class. Future testing
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should be carried out on segmentation of objects
in brain tissue, since all prior success with CRF's
has come with globular objects that the model
tends to prefer.
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