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Abstract 

The human brain connectome is intrinsically organized into small world networks. The 

network topology of brain can be investigated using anatomical, functional, and effective 

connectivity. Here we review modern functional connectivity statistics used to examine 

brain integration. We then assess transcallosal integration in autism during face 

processing using an interhemispheric partial correlation analysis and a symmetric 

template registration technique that takes into account the asymmetry of homologous 

brain regions. Individuals with autism exhibit interhemispheric overconnectivity in both 

the insula and superior temporal gyrus during face processing when compared to 

controls. 

 

Introduction 

The human brain connectome exhibits intrinsic anatomical and functional brain 

organization 1-3. The network topography of human brain can be studied using 

anatomical, functional, and effective statistical analyses of images collected using a 

variety of in vivo imaging techniques. Networks of brain function can be understood 

using functional MRI (fMRI) by examining the segregation of localized activity or the 

integration of brain regions that form a network 4. Statistical mapping of brain function 

using fMRI traditionally focused on the magnitude of segregated activity during task-

specific paradigms. Localized activation within the brain was first detected with fMRI 

using product moment correlation 5,6 which was used as an index of association between 

the recorded fMRI signal at each voxel and a task design vector. As an alternative to 

mapping segregated patterns of localized brain activation using correlation, information 

transfer within the brain can be investigated by examining the integration of BOLD 

responses among brain regions using functional connectivity imaging analysis.  
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Functional Connectivity 

Functional connectivity, the “temporal correlations between remote physiological events” 
7 is a means by which information integrated between and within brain regions can be 

detected. However, for some functional connectivity studies, the definition also includes 

correlations across subjects 8 or correlations of segregated activations (beta weights) 

across event types 9. Functional connectivity is distinct from effective connectivity, “the 

influence one neuronal system exerts over another” 10. Effective connectivity requires an 

a priori model for causal relationships, unlike functional connectivity which is 

considered to be more exploratory in nature 11. Functional connectivity, unlike effective 

connectivity, neither presumes a causal connection between regions nor explains the 

driving force of interregional correlations. In the context of connectivity analysis, 

correlation and regression are not comparable because regression has a causal 

interpretation. In fact, regression can be considered the simplest structural equation 

model, an effective connectivity technique. Functional connectivity using fMRI was first 

applied to the motor cortex of resting human brain using the product moment correlation 

of BOLD time courses 12,13. Temporal functional connectivity techniques vary with 

experimental design. Block design studies are able to utilize the variance at the beginning 

and end of a block for connectivity analysis and condition specific block connectivity is 

possible using simple subtraction to separate blocks. As the stimulus presentation 

shortens to that of an event-related design, measuring connectivity for specific trial 

conditions becomes more difficult since the individual trial signal variance is masked by 

the overlapping hemodynamic response functions of adjacent trials 14. Functional 

connectivity measures can be tested for significance using random field theory 15. The 

integrity of functional connectivity between nodes determines the extent of integration of 

circuits in the functional network.  

 

Functional connectivity can be examined during tasks or at rest 16 and analyzed using 

univariate and multivariate17 techniques that take the form of  correlations among time 

series using temporal and frequency based approaches 18 or the spectral decomposition of 

time series into their spatial modes 15. In this report, we review functional connectivity 
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statistics and outline an interhemispheric connectivity analysis using partial correlations 

to examine transcallosal integration in autism. 

 

Functional Connectivity Statistics 

Bravais-Pearson product moment correlation 

The Bravais-Pearson product moment correlation in fMRI analysis can be defined as:  
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where sx  and sy  are the sample standard deviations, x  and y  are the sample means 

based on n time series measurements of random variables X  and Y 19. Rather than using 

this index as a measure of association between the recorded fMRI signal at each voxel 

and a task design vector 5,6,20, this statistic can also be used for connectivity analysis 12,13 

and to determine the number of edges and distances between nodes in a theoretical graph 

framework 21. The correlation coefficient, used as a functional connectivity measure, can 

be derived from LSE regression, an effective connectivity measure, via the equation 22: 

r2= βxy βyx 
 
where βxy and βyx are the coefficients for regressing x on y and y on x respectively. This 

equation identifies the squared correlation of functional connectivity as the interaction 

between effective connectivity weights with exchanged dependent and independent 

variables. One disadvantage of product-moment correlation is that the sampling 

distribution of non-zero correlations is skewed. This can be corrected using the nonlinear 

Fisher r to z’ transformation 23: 
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The linear correlation can be tested using 24,25: 
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For seed correlation analyses, t-transformed correlations of Gaussian smoothed time 

series form a t-field and can be tested for significance on a t-distribution; however, cross-

correlation, autocorrelation, and homologous correlation fields do not from a t-field when 

t-transformed so tests of significance need to be based on random field theory 15,26. 

Thresholded correlations are a useful statistic to detect functional connectivity in local 

networks but may be less useful localizing long range networks compared to PCA and 

SVD discussed below 27. Another disadvantage is that the product moment correlation 

only describes linear association. The generalized correlation coefficient is a 

correntropy statistic based on mutual information that captures both linear and non-linear 

contributions, unlike  Pearson’s correlation, and does so preserving the sign of the 

correlation measure unlike canonical correlation 28. Curvilinear relations can be assessed 

using the index of correlation, yxr 29:  

y
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where y)σ  is the standard deviation of the estimates for y, y) , when y is regressed on x, 

and yσ is the standard deviation of the actual y values.  

 

Intraregional Connectivity Analysis: COSLOF Index 

The cross-correlation coefficients of spontaneous low frequency synchrony (COSLOF 

index) was originally developed to identify alterations in hippocampal functional 

synchrony due to neurodegeneration in Alzheimer disease 30. As an estimate of 

intraregional connectivity, the COSLOF index serves as a metric for functional 

synchrony within a region of interest. The COSLOF index is generated by: 
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where K is the number of voxels and ccij is the cross-correlation coefficient between the 

ith and jth voxel time course in the ROI. Reductions or increases in the COSLOF index 

would be interpreted as dysfunctional connectivity. While originally developed for 

resting state connectivity, a COSLOF-like index representing the average cross 

correlation coefficient within a region of interest may serve equally well as a functional 
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connectivity index during an event-related task. The disadvantage of this technique is that 

it is restricted to linear associations since it is based on Pearson’s correlation. 

 

Beta Series Correlation Analysis 

Beta series correlation analysis (BSCA) operates within the general linear model to 

estimate beta values for individual events as an estimate of BOLD response magnitude. 

These parameter estimates for each trial can be categorized to produce a beta series for 

each trial type. The BSCA multivariate approach is distinct from more typical univariate 

approaches in that variability of individual trials is taken into account with the former, 

but not the latter, method 9. The collection of beta series within an ROI can then be used 

as seeds in a voxelwise correlation analysis. This technique has been validated with 

coherence measures of connectivity on a previously published dataset and applied in a 

working memory study investigating functional connectivity with the fusiform face area 

during a delayed face recognition task 31. The disadvantage of this technique is that it is 

essentially a correlation of regression estimates and is less robust than a structural 

equation modeling approach. 

 

Real-time Connectivity Analysis 

Real-time functional connectivity analyses have applications in behavioral therapy as a 

biofeedback mechanism. Predictive models are able to forecast future connectivity 

estimates and would give subjects feedback closer to real-time. Examples of forecasting 

estimates include mean absolute deviation, Theil’s U-statistic, and state-space models 32. 

Dynamic linear models are state space models using Bayesian inference, have 

applications in real-time analyses, and have the form: 

Y = X Θ + v 
 
where Y is the dependent variable vector, X is the independent variable vector, Θ is an 

unknown parameter vector, and v is an error vector. Online correlation, principal 

component (PCA), independent component (ICA), and entropy analyses are methods to 

evaluate connectivity features of the brain in real-time 33. Online correlation analysis in 

particular is easily implemented (see Appendix) and is useful for observing the evolution 
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of the correlation coefficient over time, but does not take into account non-linear 

associations. 

 

Asymmetric Functional Connectivity Analysis 

Although no anatomical constraints are required in functional connectivity analysis, 

anatomical constraints may be useful in identifying asymmetric chronoarchitecture. One 

measure of asymmetric functional connectivity is the laterality index which has the 

form: 

Laterality Index = 
RL
RL

+
−  

where L is left hemisphere activation and R is activation in the corresponding region of 

the right hemisphere 34,35. A disadvantage of the laterality index is that its application is 

limited to functional systems whose anatomical connections are asymmetric. An 

alternative statistic is the spatial coincidence coefficient (SCC) for contralateral 

connectivity  36: 
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This statistic is useful for determining the extent of asymmetric functional connectivity 

using Pearson’s correlation based on the mean number of voxels above threshold in the 

right ROI (R), in the left ROI (L), or outside either ROI (O). A disadvantage of this 

technique is that it is threshold dependent, although it was originally developed as a 

means to estimate an appropriate threshold in resting state networks by penalizing 

undesirable connectivities. 

 
Rank Correlations 

Rank correlation coefficients are non-parametric measures of similarity that can be 

implemented by converting the fMRI time series to ranks. The most well known non-

parametric correlation statistic is the quadrant correlation, also known as Blomqvist’s q 

statistic or the medial correlation statistic 37. The quadrant correlation is the sample 

correlation between the signs of deviations from the median and has the form 22,38: 
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Spearman rank correlation, rs, can be rewritten using the difference in ranks di = xi-yi 

using the equation: 
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where rs is the Spearman rank correlation with correction for tied ranks, g is the number 

of different tied rank groupings, and ti is the number of tied ranks in the ith grouping 19. A 

disadvantage of the Spearman correlation is that it’s significance testing can only be 

approximated 39.  The Spearman correlation is closely related to Pearson’s correlation and 

can be converted to a product moment correlation using Pearson’s approximation 40: 
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Kendall’s rank order correlation or Kendall’s tau,τ , is an alternative statistic that 

quantifies the disagreement of rankings in X and Y and has the form: 

1
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where P is the total number of agreements 41. With tied ranks, the equation becomes: 
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where fi is the number of tied observations in each group of ties on X and 
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where fi is the number of tied observations in each group of ties on Y. In practice, a 

general rule for non-parametric tests is for n <30 use Spearman’s correlation if there are 
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no expected differences in ranks or outliers; otherwise, Kendall’s correlation is preferred. 

For n> 30, either Spearman’s or Kendall’s correlation is acceptable 39, however, 

Spearman’s coefficient may perform better that Kendall for a large n and is easier to 

calculate 42. The Spearman or Kendall coefficients can be z-tested for significance after a 

Fisher r to z conversion 24. 

 

Partial Correlation 

Partial correlation is used to measure the association between two time series, A and B, 

after the effects of other time series are partialed out from both A and B 24,43. If three time 

series are involved and a multivariate normal distribution is assumed, the sample estimate 

for the Pearson partial correlation coefficient 3.12ρ  can be defined as: 
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Yule generalized the partial correlation to n time series as follows 44: 
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The Pearson partial correlation is usually smaller than the product-moment correlation 

unless a covariate of no interest is present that is highly correlated with the predictors but 

uncorrelated with the dependent variable 45. Kendall’s partial tau correlation has the 

form: 
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Where τ 12, τ 13, and τ 23 are Kendall’s rank correlations46. Kendall also described a 

partial correlation for Spearman’s partial correlation and suggested this approach could 

only be defended by analogy with Kendall’s partial correlation: 
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where 1.23ρ  is the partial correlation between variables 2 and 3 when variable 1 is 

constant. The partial correlation can be tested on a t-distribution: 
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where q is the number of variable partialled out 47.  

 

Semipartial and Multiple Semipartial Correlation 

A semipartial correlation, also known as a part correlation, quantifies the relationship 

between time series A and B after partialing out other time series from A but not B. The 

partial correlation is greater than or equal to the semipartial correlation and can be 

determined from the multiple correlation discussed below 43. The multiple semipartial 

correlation quantifies the correlation of A with B and C and the effects of other variables 

are removed from B and C. Both the squared semipartial and squared multiple semipartial 

correlation can be determined from the difference of squared multiple correlations43. The 

advantage of these correlations is that specific network interactions can be assessed. The 

disadvantage is that only linear effects are modeled. 

 

Multiple Correlation 

The multiple correlation coefficient, R, is the product moment correlation between a 

time series, A, and the estimated time series from multiple regression when regressing A 

on the linear combination of remaining time series 41. In the multiple regression 

framework, the squared multiple correlation 
2

,,1. JYR K  can be interpreted as the 

proportion of variance in the dependent variable explained by the independent variables 
48: 

total

regression
JY SS

SS
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Multiple correlation is the maximum correlation possible between the dependent variable 

and the linear combination of independent variables 43. There is discrepancy whether the 
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multiple correlation statistic should be reported as squared, i.e. as the coefficient of 

multiple determination, 48 or not 49. The sample multiple correlation can be adjusted to 

account for its overestimation of the population multiple correlation 48 and can be tested 

on the F-statistic 47: 

J
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Partial Multiple Correlation 

The partial multiple correlation, also known as multiple partial correlation, quantifies the 

linear relationship between a dependent variable and a group of independent variables 

after partialling out another group of  variables from both the independent and dependent 

variables 43,50,51. The squared partial multiple correlation has the form: 

2
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Where 2
)(. cbaR  is the squared partial multiple correlation between variable a and dependent 

variables in b [x1,x2,x3…xn] while partialing out the control variables in c [z1,z2,…,zn] 

from both a and b, 2
.bcaR  is the squared multiple correlation between the dependent 

variable a and all other variables in b and c, i.e. [x1,…,xn,z1,…,zn], and 2
.caR is the 

multiple correlation between the independent variable a and control variables in c 43. The 

basic difference between a partial and partial multiple correlation is the number of 

independent variables. The partial correlation has one independent variable but the partial 

multiple correlation has more than one independent variable 43. 

 

Comparison of Part, Partial, and Multiple Correlations 

In the context of time series, multiple and partial correlation work best when the form of  

multiple regression is linear 52. Multiple and partial correlation are distinct 53. Multiple 

correlation is used to determine the relation between a given time series and all other time 

series; whereas, partial correlation characterizes the relation between two time series 

while controlling for all additional time series 44.  In partial correlation, each variable in 
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the correlation is residualized on the variables of no interest. This is in contrast to the 

semipartial correlation statistic in which the correlation is between an unmodified 

variable and a variable residualized on one or more other variables. The squared 

semipartial correlation statistic can be calculated by subtracting the squared multiple 

correlation between the dependent variable and variables of no interest from the squared 

multiple correlation between the dependent variable and all independent variables 43. The 

advantage of these techniques is that multiple connectivity patterns can be modeled; 

however, these patterns are only modeled in a linear fashion.  

 

 
Figure 1: Correlations for Functional Connectivity 

 

Canonical Correlation 

The canonical correlation54 is a multivariate statistic that measures the overall strength of 

interrelationships between a set of multiple dependent variables and a set of multiple 

independent variables 55. Calculating the canonical correlation involves the maximization 

of the correlation between set X and set Y, each of which contains variables representing 
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timeseries from separate voxels 56. The canonical correlation can be derived by analogy 

with multiple regression and multiple correlation 57 and has the form: 

0|| 11 =−−− IRRRR xyxxyxyy λ  

where | | denotes the determinant, yyR  is the correlation matrix of the variables in set Y, 

xxR  is the correlation matrix of variables in set X, xyR  is the correlation matrix of set X 

variables with set Y variables, yxR  is the transpose of xyR , λ are the eigenvalues, and I is 

the identity matrix. The canonical correlation, Rc, varies between 0 and 1 and is the 

correlation between the two canonical variates, the weighted linear combination of each 

set that maximizes Rc and has the form 43: 

λ=cR  

The canonical variates are the results from a canonical variates analysis 58. As indicated 

by this equation, canonical correlation does not provide directionality of the correlation 

unlike the Pearson correlation 28. The maximum number of canonical correlations 

corresponds to the lowest number of variables in either set X or Y. Subsequent pairs of 

canonical variates are orthogonal to all prior pairs and produce canonical correlations 

with decreasing magnitude. The square of the canonical correlation represents the 

variance shared by each pair of canonical variates in X and Y. Multiple regression is a 

type of canonical analysis in which only one dependent variable is present 43. The 

canonical correlation statistic is useful in functional connectivity because, unlike multiple 

regression, the canonical correlation is symmetric in the sense that either set could be the 

dependent or independent set and still produce the same result 59. Canonical variates 

analysis can be used in a multivariate framework to identify patterns of task dependent 

The canonical correlation can be used to formulate Wilk’s lambda 43: 
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Where Λ  is Wilk’s lambda, 2
1cR is the square of the first canonical correlation, 2

2cR   is the 

square of the second canonical correlation, and 
2

jcR is the square of the jth canonical 
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correlation. The significance of the canonical correlation can be tested using Wilk’s 

lambda directly using random field theory 60 or using Bartlett’s significance test of 

lambda using the chi-squared distribution: 

 

)ln()]1(5.01[2 Λ++−−−= qpNχ ; pqdf =  

 

where N is the number of subjects; p is the number of variables on the left; q is the 

number of variables on the right; and df is the degrees of freedom 43. Correction of the 

maximum or principal canonical correlation for multiple comparisons can be determined 

using random field theory 61. A difficulty with canonical correlation is that it is sensitive 

to multicollinearity. 

 

Time Dependent Regression Estimation 

Dynamic changes in connectivity are not accounted for by the stationary and constant 

network estimates 62,63. Variable parameter regression models beta variation and has the 

form64: 

tttt uxy += β  

),0(~ 2σNut ; Tt ,,1K=   

Variable parameter regression with Kalman filtering models the time-varying 

parameter estimate using a random walk 65 . A disadvantage of the Kalman filter is that it 

is a one sided filtering technique that requires estimation of the initial state. A preferred 

approach in the economics literature is Schlicht’s method for variable parameter 

regression which uses a two-sided filter that makes no assumptions about the initial state 

and uses all the time points to estimate each coefficient 66. Alternatively, partly 

conditional time varying coefficient modeling estimates regression parameters as a 

function of predicted and predictor variable timing using an extension of marginal 

regression analysis 67. These methods may be useful to observe the task-dependent 

changes in fMRI connectivity studies and are comparable to the psychophysiological 

interaction analyses discussed below. 
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Psychophysiological Interaction (PPI) 

Rather than estimating the beta weight as a random walk over time, the beta 

coefficient could be estimated as a function of time-dependent explanatory variables 65. A 

psychophysiological interaction refers to a change in the slope, when regressing activity 

from two brain regions, brought about by a psychological variable 68. PPI enables the 

determination of the contribution that activity in a given brain region is influenced by the 

interaction between a psychological variable and the activity of another brain region 69. 

Activity in PPI analysis is modeled using three explanatory regressors including a voxel 

time course as the physiological, brain response variable; a psychological variable based 

on the context of the stimuli presented 70; and the psychophysiological product of the 

former two variables 11,71. The first two regressors are treated as regressors of no interest 

and the third is used to generate statistical maps. In other words, this analysis can identify 

a region, A, of brain that is active in response to a stimulus only when another region, B, 

of brain is active. The interpretation would be that region B’s activity modulates the 

activity of region A indicating they are effectively connected 68. However large number 

of inputs to a region are required to interpret results in the context of effective 

connectivity; and, signal from one ROI can only be interpreted in the context of 

functional connectivity 68,71. This may be one reason why PPI analysis has been 

categorized as a functional connectivity technique 11. Unlike functional connectivity 

analysis, PPI provides insight into the directionality of the “contextual modulation of 

connectivity,” because the statistical maps generated depend upon which physiological 

node in the functional circuit was used to generate the psychophysiological interaction 

regressor 72.  

 

Fractal Connectivity 

Fractals are self-similar patterns that follow a power law of the form: 

N = s d 

where d is the fractal dimension. The term fractal is derived from Latin meaning broken. 

The term fractal in fractal dimension describes the “broken” non-integer nature of d and 
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dimension refers to the power law relationship that defines the self-similarity property 73. 

Fractal analysis methods to determine the fractal dimension include the Hausdorff, 

Minkowski-Bougliand, calliper, box counting, and mass-radius methods 74. The fractal 

dimension of a given time series can be assessed using a dispersion method based on the 

standard deviation 75: 
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This calculation is then repeated for a new time series that has adjacent points averaged 

and N/2 points to determine SD(m=2), and with 4 points averaged to produce SD(m=4), 

until the number of total points is less than 4. The slope of a log SD(m) vs log m plot can 

then be subtracted from 1 to quantify the fractal dimension75, which can be interpreted as 

a measure of internal or self-similar connectivity. Fractal networks of brain connectivity 

exhibit small world properties that can be assessed using measures of degree, the 

clustering coefficient, and the minimum path length 76. Fractals have the advantage of 

characterizing networks across several levels of complexity; however, fractal analysis of 

real data, unlike mathematical constructs, may not have adequate sensitivity to 

characterize subtle differences in complexity which rarely has more self-similarity than 

two orders of magnitude 74.  

 

Wavelet Correlation 

Wavelets are fractal functions that take into account the 1/f, long memory properties of 

the BOLD response and, for this reason, wavelet analysis is preferred to simple 

correlation analysis as an estimator of functional connectivity 77. The wavelet coefficients 

produced from decomposition of each time series can be used to calculate  the wavelet 

correlation coefficient which is derived from the ratio of wavelet covariances and 

variances 78,79 and has the form 23:  

)()(
)(

)(
21 jj

jx
jx λσλσ

λγ
λρ = ; 

),(
2
1)( ,,2,,1 tjtj

j
jx wwCov

λ
λγ =

 

where )( jx λγ  is the covariance of (x1,t,x2,t) for scale jλ ; tjw ,,1  and tjw ,,2 are the scale 

jλ wavelet coefficients for x1,t and x2,t ; and )(1 jλσ and )(2 jλσ are the wavelet variances 
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for x1,t and x2,t . Wavelet correlation has an advantage over other correlation procedures 

because this statistic integrates both phase and amplitude information and overcomes the 

difficulties of window width selection 80. Further development of the wavelet correlation 

using the  MODWT, maximal overlap discrete wavelet transform, can be found in its 

application to small world properties of low frequency neural fluctuations 81. A Matlab 

toolbox has also been developed (see Appendix). 

 

Coherence Analysis 

Event-related fMRI integration can be examined using coherence, a frequency based 

correlation measure 82,83. More specifically, coherence is defined as: 

)()(

)(
)()(

2
2

gfgf

gf
gRgCoherence

yyxx

xy
xyxy ==  

 

where Rxy(g) is the complex valued coherency of time series x and y, fxy(g) is the cross-

spectrum of x and y, and fyy(g) is the power spectrum of y. An advantage of coherence 

analysis is that functional connectivity can be measured independent of HRF form and 

independent of hemodynamic spatial heterogeneity. A disadvantage of this technique is 

that the temporal waveforms of condition specific trial types are unable to be separated 

due to overlapping hemodynamics of adjacent event-related trials. Task dependent 

changes in coherence over time may be detectable using time-varying transfer 

functions84. 

 
Spectral Decomposition Methods 

For further elaboration of the techniques discussed below and significance testing, the 

reader is referred to a recent review85,86. 

 

Eigenimage or spatial mode analysis 

Functional connectivity can be measured with eigenimage analysis using singular value 

decomposition 87,88. Singular value decomposition is a method of data reduction that is 
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applicable to canonical correlation and principal component analysis 89 and decomposes a 

matrix into orthonormal bases using 90; 
TUDVA =  

where A is a scan time by brain voxel matrix containing BOLD signal intensities; U is a 

time by eigenvoxel matrix whose orthonormal columns contain the left singular vectors, 

temporal eigenvectors, or eigenvariates; D is an eigenvoxel by eigentime diagonal matrix 

of singular values in A which, when squared, are the eigenvalues that indicate 

eigenintensity; and V is a voxel  by eigentime matrix whose orthonormal columns are the 

right singular vectors, spatial  eigenvectors, or eigenimages 91,92.  

 

 
Figure 2: Singular Value Decomposition, adapted from 90 

 

Each eigenimage, or spatial mode, in V is a voxel-dependent profile of each eigenvariate 

and defines a functionally connected, but distributed, brain system; and, each eigenvariate 
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in U is a time-dependent profile of each eigenimage 87. Generalized eigenimage 

analysis can be used to identify group differences in eigensystems: 

λdCdC ij =  

where C is the correlation matrix of groups i and j and d is the generalized eigenimage 87. 

A disadvantage of these these techniques is that they are sensitive to preprocessing and 

significant results can only be characterized descriptively86. 

  

Multidimensional Scaling 

Metric multidimensional scaling, or principal coordinates analysis, is a multivariate 

technique to visualize functional connectivity by mapping anatomy into functional 

space93 and takes the form: 

TT UUAA λ= ; UAX T=  

Using MDS, singular value decomposition of the correlation matrix, AAT, produces 

eigenvectors in U used to determine the location of voxels in functional space, X. The 

distance between nodes derived with MDS can be related to the correlation coefficient 94: 

)1(2 ijijd ρ−=  

where d is the distance between nodes i and j, and ijρ  is the correlation of time series xi 

and yj. A disadvantage of this technique is that the graphical display restricts the number 

of data points that can be plotted and too many points make interpretation difficult. 

 

Principle and Independent Component Analysis 

PCA and ICA are exploratory methods in functional connectivity 86 that can be 

implemented using SVD 92. The key difference between PCA and ICA analysis is that 

PCA identifies uncorrelated, Gaussian source signals but ICA identifies sources that are 

non-Gaussian and independent 92. Principle component analysis (PCA) can give insight 

into functionally connected spatial modes by identifying the orthogonal axes producing 

maximal signal variance 88. In principal components analysis, the covariance matrix of 

the data, is used to produce the eigenimages in V unlike eigenimage analysis which uses 

the data matrix itself or MDS which uses the correlation matrix 88,95. ICA approaches are 
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considered data driven and do not require an a priori model which makes them especially 

useful for identifying resting state networks 16. The application of either spatial or 

temporal independent component analyses to functional connectivity depends on the task 

and hypothesis 96. In functional connectivity analysis, an advantage of ICA is that it is not 

dependent on voxel seed, unlike simple correlation, and is robust to structured noise; but, 

the bases may not fully characterize the networks and the resulting maps are difficult to 

threshold 97. Nonlinear ICA and PCA techniques attempt to overcome the orthogonal and 

linear drawbacks of eigenimage analysis 87. 

 

Partial Least Squares 

Partial least squares is a multivariate regression technique that predicts the dependent 

variable set from the independent variable set by maximizing the covariance between the 

decomposed sets of dependent and independent variables 98. Partial least squares was 

implemented in fMRI analysis using the single value decomposition of a covariance 

matrix between brain images and a behavioral or task design 99. Rather than applying  the 

SVD to a correlation or covariance matrix of identical brain images as with eigenimage 

analysis and MDS 99, PLS uses the covariance matrix of two different sets of images to 

investigate connectivity between brain systems 87. In the context of interhemispheric 

connectivity, PLS can identify systems of connectivity within a hemisphere that have the 

greatest connectivity between hemispheres: 

T
j

T
i UDVAA = ; VMMUD j

T
i

T=  

where the columns of U and V contain the singular images and the diagonal matrix, D, 

contains the singular values which represent the extent of functional connectivity 

between the two hemispheres, i and j 94. Partial least squares is fundamentally different 

from canonical variates analysis because PLS optimizes covariance patterns but CVA 

optimizes canonical variate correlations 99. The main disadvantages for PLS are the 

potential for inconsistent parameter estimation100, difficulty interpreting independent 

latent variable loadings, and the need to bootstrap for significance testing101. 
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Information Theory Approaches 

Mutual information and entropy are statistics in information theory that can be applied to 

functional connectivity analysis. Mutual information, MI, measures the information 

about X contained in Y or vice versa since mutual information is a symmetric function 
102: 

),()()(),( YXHYHXHYXMI −+=  

where differential entropy is: 

∫−= X
dXXpxpXH ))((log)()( 2  

Entropy is a measure of information gain over time 103,104 and cross-entropy is a non-

linear method to assess the complexity of interaction between  time series 75. 

Friston and colleagues 94 showed that mutual information between two time series from 

voxels p and q  can be written in terms of the correlation coefficient  

2/)1log( 2ρ−−=pqMI  

An advantage of mutual information over simple correlation is that mutual information 

can be extended to multivariate assessment. For example, when determining the 

relationship between multiple time series from region p and q, mutual information can be 

written as 94: 
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A disadvantage of mutual information is that it does not differentiate between positive 

and negative associations like Pearson’s correlation105 but has the advantage of being able 

to identify relations between p and q that lack dependence, unlike Pearson’s 

correlation106. 

 

Conclusion 

Functional networks can be mapped in subjects at rest or performing tasks using fMRI 

functional connectivity analyses. Both univariate and multivariate statistical approaches 
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are available to identify human chronoarchitecture in specific functional circuits or whole 

networks respectively. Functional connectivity analysis is centered on the spectral 

decomposition of time series or temporal associations in the time and frequency domain. 

Time series analysis in the time, frequency, or fractal domains may be conducted across 

voxels, clusters, or groups of individuals. Functional connectivity analysis techniques are 

no longer just “temporal correlations” and may require a revision of Friston’s original 

definition of functional connectivity that adequately characterizes newer approaches such 

as fractal, coherence, and beta series correlation approaches. 

 

Case Study:  

 

Transcallosal Face Integration in Autism  

Dan Kelley, Kim Dalton, Moo Chung, Richard Davidson 

Waisman Laboratory for Brain Imaging and Behavior; University of Wisconsin-Madison. 

 

Introduction 

Functional connectivity studies are being used to clarify the role of corpus callosum 

anatomy on transcollosal integration. The extent of transcallosal integration varies among 

individuals and shows a dependence on task complexity 107. Theories for 

interhemispheric integration include asymmetric interhemispheric inhibition, information 

transfer, and hemispheric recruitment 108. The corpus callosum has several roles and its 

role in interhemispheric inhibition is known to increase through development 109. 

Interhemispheric information transfer depends on an intact corpus callosum based on 

studies of split brain and corpus callosum agenesis patients 110. A functional connectivity 

study of corpus callosum agenesis identified the presence of intrahemispheric 

connectivity, but mostly absent interhemispheric connectivity measures, during auditory 

and motor tasks 111. Behavioral studies suggest interhemispheric transfer of emotional 

information is a function of emotional significance 112, that interhemispheric processing 

increases the accuracy of face and facial expression matching 113, and that emotional 

faces have an interhemispheric processing advantage over neutral faces 114. Multimodal 

approaches using fMRI connectivity and DTI indicate that the relationship between 
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corpus callosum integrity and network integration can influence behavior 115. As an 

effective connectivity measure, dynamic causal models are useful in identifying context-

dependent changes in reciprocal interhemispheric connections between homotopic brain 

regions 116.  

 

Autism is a neurodevelopmental disorder with a classic triad of deficits in the social, 

behavioral and communicative domain that may be due to complex connectivity 

alterations in both brain structure and function 117. Both anatomical and functional 

measures indicate that transcallosal integration is altered in autism. After controlling for 

brain volume, gender, and performance IQ, the volume of the body and splenium were 

reduced in autism 118 using an adaptation of the Wittelson scheme 119. A 2D voxel-based 

morphometric analysis of midsagittal corpus callosum identified reductions in autism 

genu and splenium white matter density after controlling for age 120. Reduced fractional 

anisotropy measures using diffusion tensor imaging are noted in the corpus callosum and 

indicate that interhemispheric processing is altered 121,122. Functional connectivity studies 

also suggest that interhemispheric connectivity is reduced in autism at rest 123 and during 

sentence comprehension 124, working memory 125, and Tower of London tasks 126.   

 

Interhemispheric functional connectivity analysis between homotopic brain regions, or 

transcollosal integration analysis (TIA), will provide insight into the functional 

consequences of callosum alterations in autism. However, TIA is complicated by 

neuroanatomical asymmetries present in the human brain127-129. Identification of 

homotopic brain regions using manual parcellation is laborious but registration 

techniques from voxel based morphometry are automated and can account for these 

asymmetries. Here we describe a functional connectivity approach using partial 

correlation analysis that accounts for brain asymmetry to examine interhemispheric 

integration that could contribute to aberrant social behavior in autism.  

 

Methods 

Study design and task methodology have been reported elsewhere 130. Briefly, twelve 

male control subjects with a mean age (+/- SD) of 17.0 (+/- 2.86) and twelve males with 
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autism or Asperger’s disorder aged  16.75  (+/- 4.52) years were recruited from a list of 

available autism volunteers maintained at the University of Wisconsin-Madison Waisman 

Center. Ages were not significantly different [t(22) = -0.162,  P = 0.87] between groups.  

Criteria for diagnosing autism and Asperger’s Disorder included DSM-IV and 

confirmation with the Autism Diagnositic Interview Revised (ADI-R). Subjects 

participated in an event-related fMRI study using a facial emotion recognition task. In 

total 40 faces, 16 neutral and 24 emotional (8 happy, 8 fear, 8 anger), from the Karolinska 

Directed Emotional Faces Set 131 were presented for 3 seconds each with a jittered inter-

trial interval ranging from 5 to 7 seconds. Subjects were instructed to decide if the face 

displayed an emotion (happy, fear, anger) or was neutral and to indicate their choice with 

a button box press.  Both accuracy (percent correct) and reaction times were measured.  

Image acquisition consisted of 409 gradient recalled echo-planar images using BOLD 

contrast (TE = 30 ms; TR = 2 sec; FOV = 240x240 mm, 64x64 matrix, voxel size= 3.75 x 

3.75 x 5mm) acquired sagittally  (30 slices. 4mm thick with 1mm gap) with a 3.0 Tesla 

GE SIGNA Scanner (Waukesha, WI). Axial T1-weighted 3D SPGR images were also 

acquired (TE = 8 ms, TR = 35 ms, FOV = 240x240 mm, 256x192 matrix, 124 axial 

slices, slice thickness = 1.1-1.2 mm, NEX = 1, flip angle = 30 degrees). Analyses were 

carried out using AFNI132 and software developed in house.  Echoplanar images were 

filtered in the spatial frequency domain, reconstructed, motion corrected, and registered 

to anatomical data. Two group level analyses between Autism (n=12) and Controls 

(n=12) were conducted. The first analysis was conducted in Talairach space (AFNI) 

which preserved brain asymmetries. In this approach, all anatomical for autism and 

control subjects were corrected for non-uniformities and brought into Talairach space 

after manual marker placement. The second analysis was conducted in a symmetric 

Talairach space to take into account anatomical asymmetries and was based on a voxel 

based morphometry asymmetry analysis127. Manually Talairached anatomical images 

were averaged across all subjects in both groups. A symmetric template was generated by 

mirroring the mean anatomical image about the midline anterior-posterior plane. Each 

subject’s anatomical image was automatically registered to the symmetric template using 

a 12 parameter affine transform. In both analyses, each subject’s functional image 

underwent the same transformation as the corresponding anatomical image. We used the 



Daniel J. Kelley        5/9/2007 
 

24

partial correlation between a brain volume and the identical volume mirrored about the 

midline anterior-posterior plane as the TIA statistic and partialled out physiological noise 

using the mean whole brain time course 133.  The partial correlation statistic was 

converted to a z-score and group differences were determined with a 2-tailed t-test. The 

same binary mask of mean brain volume downsampled to functional resolution was 

applied to results in both analyses. In both analyses, we tested the null hypothesis that 

mean transcallosal integration was comparable between autism and controls. 

 

Results 

The symmetric template accounted for asymmetric differences in brain anatomy as 

evident in the posterior portions of Figure 1. A t-test identified a group interhemispheric 

connectivity difference in the insula which was more integrated in autism With both the 

symmetric and asymmetric template, we detected group differences in insula connectivity 

that was more integrated in autism (Figures 2 and 3). Using the symmetric template, we 

were also able to detect a group difference in connectivity between the superior temporal 

gyri which was greater in autism that was unable to be detected with the asymmetric 

template (Figure 4). 

 

Conclusion 

In this paper we describe differences in autism information transfer using fMRI and a 

voxelwise whole brain interhemispheric functional connectivity analysis we call 

transcallosal integration analysis. During face processing, the insulae were significantly 

more connected in autism and interinsular projections are carried by the callosum. In 

monkeys, interhemispheric fibers of the insula cross in the ventral portion of the corpus 

callosum and are topographically organized with rostral insula fibers crossing in the 

rostral corpus callosum body and caudal insula traveling through caudal portions of the 

corpus callosum body 134. We also visually compared two methods to determine whether 

brain asymmetries affect transcallosal integration analysis. In this case study, TIA using 

the asymmetric or symmetric template adequately detected the primary group difference 

in interhemispheric insula connectivity. However, smaller clusters of significant 

interhemispheric connectivity between superior temporal gyri were only detectable with 
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the symmetric Talairach template (Figure 4). Symmetric templates may be useful in 

correcting for asymmetries in functional connectivity among smaller regions at the group 

level. Given that the spatial heterogeneity of hemodynamic response functions (HRFs) 

complicates estimation of functional connectivity between heterotopic brain regions 
135,136, our transcallosal integration approach has the advantage of comparing regions with 

similar hemodynamic transfer functions based on the similarity of homologous 

neurovascular architectures. Further studies using more samples will be necessary to 

assess the utility of symmetric templates in transcallosal integration analyses.  
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Figure Legends: 

Figure 1: Symmetric Template Formation 

Figure 2: Visual Comparison of TIA Approaches Using an Unthresholded T-score Map 

Figure 3: Visual Comparison of TIA Approaches Using an Unthresholded Difference in 

Z-scores Map (Autism-Control) 

Figure 4: Visual Comparison of TIA Approaches Using a Map of Z-score Differences 

(Autism-Control) Thresholded at t(22)=3.12; p=0.005. 
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Appendix 
On-line correlation Matlab code from page 22 32. 
 
% Calculating the on-line correlation coefficient CorrXY between two variables: an input  
% variable X, and an output variable Y 
 
SumX=0; 
SumY=0; 
SumXY=0; 
SumX2=0; 
SumY2=0; 
CorrXY=[]; 
 
WHILE there are data pairs (x,y) from the input stream, DO 
{ 
 INPUT the current data pair (x(i), y(i)); 
  

SumX=SumX+x(i); 
 SumY=SumY+y(i); 
 AvX=SumX/i; 
 AvY=SumY/i; 
 SumXY=SumXY +(x(i)-AvX * (y(i)-AvY)); 
 SumX2=SumX2 + (x(i)-AvX)^2; 
 SumY2=SumY2 + (y(i)-AvY)^2; 

the current value for the correlation coefficient is; 
CorrXY(i) = SumXY / sqrt(SumX2 * SumY2); 

} 
 
 
Wavelet correlation is possible using the WMTSA Wavelet Toolkit for MATLAB 
http://www.atmos.washington.edu/~wmtsa/ 
 
 
 


