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Abstract 
 
 The normal vector is one of the metrics that are sensitive to the property of the 
curved surface. In neuroimage studies, normal vectors are used to strip skulls, to analyze 
cortical thickness, to assess the principle direction of diffusion tenor and to estimate the 
location of neural activities. However, conventional methods to estimate the vertex normal 
on the tessellated mesh are sensitive to irregular triangulation and noise signals occurred 
from the previous processing to construct a cortical surface model form MRI volume data. In 

the present project, an algorithm is proposed to estimate a normal vector on a vertex in a more precise 
fashion. Following the idea Normal Vector Voting algorithm [1], Modified Normal Vector Voting 
algorithm is implemented. Simulations on a sphere and a complex surface were performed with 
various amount of noise to assess the proposed method comparing to conventional ones. The errors 
of estimation from the proposed method were the least in all performed cases demonstrating the 
robust estimation to noise of the proposed algorithm. The large amount of computational load of the 
proposed algorithm remains as a further problem for practical application. 
 
 
 
  



1. Introduction 
1.1. Normal vector in neuroimage 

The normal vector of surface is defined as a vector perpendicular to it [2]. The 
normal vector is one of the metrics that are sensitive to the property of the curved surface. 
The most common usage of normal vector in computer-aid graphic processing is about the 
lighting effect. It is also true for the neuroimage domain since the lighting effect algorithm 
based on normal vectors is routinely applied in 3-D rendering tool. 

For the purpose of scientific analyses, the traditional usage of normal vector in 
neuroimage studies is to define the cortical thickness as the length from the vertex on the 
inner (outer) cortical surface toward the inner (outer) cortical surface along the surface 
normal on the corresponding vertex [3]. Another application of normal vectors is in the 
popular skull striping application Brain Extraction Tool (BET) [4]. It uses surface normal 
vector as a direction of step-wise iterative deformation. Each vertex push toward the inward 
surface normal so that the surface would be smooth and all vertices equally would be 
spaced. 

The recent application of normal vectors is in a diffusion tensor imaging (DTI) study, 
to obtain the information about how the diffusion tensor is aligned to the surface in 
developing human fetal brains, the difference between principle eigen vector and the surface 
normal on the triangular brain surface model was computed in terms of angel [5]. 

Besides structural analyses, the normal vector on a vertex in a brain model mesh is 
also used for functional data analysis [6]. To estimate the distributed current sources of 
measured magnetic field using magnetoencephalographic (MEG) instruments, it is rational 
to constraint the possible space of the current source as the intermediate surface between 
outer and inner cortical surfaces because the most affective neural electromagnetic events to 
MEG are known as excitatory postsynaptic potential (EPSP) or postsynaptic potential (IPSP) 
of the pyramidal cells in the laminar IV of the cerebral cortex. Dendrites of pyramidal cells 
are mostly aligned to the direction of the normal vector on the cortical surface. For this 
reason, in the solution called Minimum-Norm Estimation (MNE), the possible current 
sources are presumed as to be within the cortical ribbons directing the normal vector, and 
the neural activities over the whole brain are modeled as several normal vectors on the 
surface mesh, spacing regarding the spatial resolution of MEG instrument. In this sort of 
model, it is critical issue to construct an accurate surface model as it enhances the results for 
the location of neural activities. 
 

1.2. Related methods and motivation 
 The surface normal can be obtained by the cross product of two non-collinear 
vectors both in a plane. Also for a curved surface, the normal vector on a certain point 
within the surface can be defined as a vector perpendicular to the tangential plane to the 
point. If we know the equation of the curved surface, then we can get the equation of the 
tangential plane deriving the surface, and analytically can obtain the normal vector on a 
point. 
 The reality is that only things we handle in computerized neuroimage is a 
piecewise-smooth tessellated triangular mesh as an approximation of the curved surface in 
the real world. This challenge to estimate normals on a curved surface via a polygonal 
approximation is well known in the computer graphic field and also vastly investigated for a 
long time. Henri Gouraud had implemented an algorithm for shading effect on polygons 
using estimation of vertex normals in 1971 [7]1. Since then various approaches have seen 

                                                      
1 This approach is quite simple in where the estimation for a vertex normal is an arithmetic average 

of surface normals of surrounding facets. But for this simplicity, the major advantage of this approach 



introduced [8]. 

 
Fig. 1. Examples of normal estimations on a vertex (red) and surface normals (blue) of neighboring 

triangles 

 
 One idea is to set weighting parameters in average in aspect of the property of 
neighboring triangles rather than simply setting all as one as Gouraud. Taubin proposed the 
areas of triangles [9], and Thurmer and Wuthrich proposed the interior angle of triangles [10] 

as the weighting factors. Let 𝑵𝒊
  is estimation for the normal on the i-th vertex, then the each 

estimation can be formalized as 
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 𝛗𝒋
𝐦
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 and  
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 for Thurmer and Wuthrich’s method 

where 𝐦 is the number of neighbor triangles, 𝒏𝒋 is the surface normal of the j-th 

triangle, 𝛗𝒋 is the angle of the j-th triangle, and 𝑻𝒋 is the area of the j-th triangle. 

Alternately, Principle Component Analysis (PCA) can be used to estimate the 
normal vector [11]. To briefly address the idea, the eigen vector of the covariance matrix of 
the coordinates of the center vertex and the sets of vertices embedded neighboring triangles 
would be orthogonal bases which represent the variance of points the best. Assuming those 
points forms a curved surface, the eigen vector with the least eigen value would be an 
approximation of the normal on the center vertex. Formal explanation is stated in [11]. 
 Also there may be other methods such as linear regression and finite difference 
method as reviewed in [8]. But those are not of interest in this project. 
 

1.3. Problems and aim statement 
To estimate the normals using facets normals or via PCA may be biased in cases 

such as 
(1) when the triangles in mesh is irregular 
Triangles in the mesh should be different in the length of edges and thus areas to fit 

the curved surface while each triangles are still plane, i.e. piecewise-smooth. So there cannot 
be ‘perfect regularity’ in triangles. However, irregular tessellation bias the normal vector 
estimation especially based on the facet normals. In the examples from [1], the mesh in (b) 
shows irregular triangulation leads to the biased coverage of neighbor triangles. In other 

                                                                                                                                                                     
is the fast computation which can be critical dealing with massive numbers of polygons in a domain 
such as 3D graphic games. 



words, when the triangulation is irregular, the discrepancy between the area of 1-ring2 
neighbors (Fig 2; alternately shaded triangles right surrounding the open circle in the center) 
and the area within a certain geodesic distance (Fig 2; black thick circle) would increase. 

 
Fig. 2. (a) an example of regular triangulation and (b) irregular triangulation; Reprinted from [1] 

 

Irregular triangulation is also in case with the example of cortical surface model 
from [12]. The cortical model is constructed by a deformable surface algorithm. In this 
algorithm, the mesh with 40,962 vertices and 81,920 triangles starts as an ellipsoid outside of 
the brain, and it shrinks in a stepwise fashion with until it reach the segmented white-matter 
volume in MRI image to construct the inner cortical surface, which is more easily detectable 
than the interface between gray matter or pia matter, which is a thin tissue that covers the 
outer surface of cerebral cortex, and cerebrospinal fluid (CSF). Then the surface expands 
with constraints to construct the outer surface, or the pial surface. 

 

 
Fig. 3. The outer cortical surface of control #9 (left) with a magnified view (right); Color codes 

represent the area of triangles. 
 

The outer cortical surface of the normal control subject #9 is visualized (Fig. 3). As it 
can be seen in the magnified view, the triangles in the mesh of cortical surface model used in 
practical researches shows irregularity, especially on the sulcal area where the surface is 
more complicated than gyral areas. 

                                                      
2 K-ring refer to the set of triangles in the K-th ring around the center vertex. The alternately shaded 
triangles(Fig.2; indicated by a blue arrow) are 1-ring neighbors. And white triangles surrounding 1-
ring(Fig.2; indicated by a orange arrow) are 2-ring neighbors. See Page et al (2002) for details. 



 
(2) when the mesh contains noisy points 
The second case when the normal estimation can be biased is about the noise. 

Because in the deformable surface algorithm, a vertex on the original ellipsoid may not be 
‘pushed’ enough due to the errors from the previous segmentation on the MRI volume data. 
That is, if a voxel in the CSF is classified as a white matter, then the corresponding vertex left 
outside the cortical surface; this leaves a ‘throne’ on the surface [13]. In case of the autism 
subject #1 from [12], the outer cortical surface model has a several ‘thrones’ especially the 
ventral region of the temporal lobe and occipital lobe. This noise is possibly due the 
detachment of the brain stem and cerebrum (Fig 4). 

The cases described above are well noticeable in the histogram (Fig. 5). The aim of 
this project is to propose an algorithm which can estimate the normal vector on a vertex 
despite of irregularity in triangulation and noise on the mesh from MR image processing 
and its implementation to compare the performance with congenital methods. 

 
Fig. 4. The outer cortical surface of the autism subject #1 (left); Vertices with noise indicated with 

orange arrows in a magnified view (right) 

 

 
Fig. 5. Histograms of the areas of triangles (left; control #9) and the length of edges (right; autism #1) 

in outer cortical surface models 

 
 



2. Proposed method 
2.1. Normal Vector Voting algorithm 

The idea of Normal Vector Voting to estimate the vertex normal on triangular mesh 
was introduced by Page and colleagues [1]. To briefly explain the procedure; (1) find the 
neighbors defined in terms of geodesic distance, (2) get ‘votes’ from each neighboring 
triangles, (3) perform eigen analysis to extract the agreement amongst votes, (4) finally 
estimate the orientation of the normal and curvature. Refer to [1] for details. 

The key innovation of this algorithm is to define the neighbors in terms of geodesic 
distance to balance the range of neighbor even on the irregularly triangulated mesh and to 
penalize the ‘vote’ from a distant triangle under the assumption of that the curvature on a 
curved surface changes continuously. In other words, the more the neighbor is nearby, the 
more the neighbor is likely to know about the center vertex normal. What the ‘vote’ here 

refers to is a certain transformation (𝑵𝒊) of the individual surface normal (𝑵) of each 

neighboring triangle (𝒇𝒊) as one of the normal estimation for the vertex (𝒗) (Fig. 6). 

 
Fig.6. Voting scheme; Reprinted from [1] 

 
Another innovative part is the eigenvalues analysis, rather than averaging the votes. 

It is possible to detect the crease or corner by classifying the tensor eigenvalues. There is a 
dominant eigen value in the covariance matrix of votes when the vertex of interest is on the 
smooth surface, whereas the preference decreases when the vertex is near the crease or 
corner. 

However, in the present context, it is not necessary to detect the crease or junction of 
surfaces handling the cortical surface models. It would be natural to assume the cortical 
surface as a continuous curved surface, and an orientble one since it is constructed from an 
ellipsoid. For the simplicity and reduced computational load, the eigen value analysis is 
modified as weighted averaging in the present implementation. 

Another modification is using Euclidian distance instead of geodesic distance. One 
reason is that computing geodesic distance in 3D space itself requires a huge amount of 
computational load, and also highly complicated problem with a manifold with a large 
number of vertices. On the other hand, computing Euclidian distance in 3D space can be 
done as the L2norm of the vector between the points costing a little resource. Besides, the 
boundary defined in this implement is relatively small, and it is not likely to have critical 
bias except inside extremely narrow fissure. For those reasons, using Euclidian distance is 
assumed to yield a reasonable computational load and result. 

 
2.2. Modified Normal Vector Voting algorithm 

The main ideas of the present algorithm are to take more neighbors than simple 1-
ring, and to modify the surface normals to fit the vertex normal better, and to penalize the 



votes from distant triangles. 
The steps of proposed algorithm are 

(1) define the 2-ring neighbors surrounding the center vertex 
(2) cast votes from neighbors 
(3) average the votes weighting by respective area and the Euclidian distance. 

The details of each step are explained as following. 
 

2.2.1. 2-ring neighbor definition 
The neighbors are defined as 1-ring (Fig. 7; triangles colored by cyan) and 2-ring 

neighbors (Fig. 7; triangles colored by magenta). Since the average length of edges are 
around 3mm in the data set, the expected radius of this 2-ring is 6mm. This small range of 
neighbors makes using Euclidian distance in this implementation instead of geodesic 
distance. If the boundary of neighbors is too large, then the discrepancy between Euclidian 
distance and geodesic distance on a manifold would be significantly large. Also this 
boundary makes the computational load reasonable. The issue will be discussed later. 

 
Fig. 7. 2-ring neighbors surrounding a certain vertex (marked by a red asteroid) 

 
2.2.2. Vote casting 

Unlikely other weighted averaging methods, in Normal Vector Voting algorithm 

and the present implementation, the ‘opinion’ (𝑵𝒊) about the vertex normal of the individual 

surface (𝒇𝒊) is not the surface normal of itself (Fig. 8. a). Instead, the ‘vote’ is the surface 

normal rotated by (𝟐𝜽 − 𝝅) in plane 𝚷𝐢 which contains both surface normal (𝑵) and its vote 

(𝑵𝒊) (Fig. 8. b). The reason of this rotation is that the underlying surface between the 
centroid of the triangle and the center vertex would be curved. The casted votes can be more 
likely to be similar with the real normal on the center vertex in this fashion. 

 
Fig. 8. Voting scheme; Reprinted from [1] 

 



2.2.3. Vote collection 

The last step for the estimation of normal on j-th vertex (𝑵𝒗
𝒋  ) is to average the votes 

as 

𝑵𝒗
𝒋 =  𝑵𝒊𝑾𝒊

𝒋
𝒎

𝒊=𝟏
 

𝑾𝒊
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=
𝑻𝒊

 𝑻𝒊
𝒎
𝒊=𝟏

𝒆𝒙𝒑⁡(−𝟐
 𝒗𝒄𝒊        

𝔼 𝒆𝒍 
) 

 

where 𝑵𝒊 is an individual vote from the i-th neighboring triangle, 𝒎 is the number 

of triangles within 2-ring boundary, 𝑾𝒊
𝒋
 is the weighting factor, 𝑻𝒊 is the area of i-th 

triangle,  𝒗𝒄𝒊        is the Euclidean distance as the L2norm of the vector between the j-th vertex 

and the centroid of i-th triangle (Fig. 7; two headed black arrow), and 𝔼(𝒆𝒍) is the expected 
length of edge as the average of all edges in the whole mesh.  

Note that the weighting factor penalizes the corresponding vote exponentially. The 
reason for this discounting, or decaying, is the assumption of the continuous change of the 
curvature. While assuming no abrupt change of curvature included in the surface of interest, 
i.e. the brain, the facets located further from the center vertex would be more likely to have a 
different normals from the normal that is to be estimated. The reason for that the decaying 
function is exponential is not clearly explained in the original paper of Page et al [1]. 
However, it can be reasoned from the fact that, as the boundary of neighbors increases, the 
number of neighbors increase exponentially. If the decaying function is linear, the sum of 
votes on the iso-distance contour cannot be stable across the distance. It would be rational to 
use an exponential function to control the distribution of the sum of each distance consistent. 
 
 

3. Simulation 
3.1. Comparison scheme 

To compare the performance of the present algorithm related to other conventional 
ones, following steps were performed. 

(1) Synthesize a smooth surface 

(2) compute vertex normals (𝑵𝟎 ) with a certain method on it 
(3) add a certain amount of Gaussian noise on the surface 

(4) compute vertex normals (𝑵𝟏 ) with the same method 
(5) compute the estimation error on the i-th vertex defined as 

𝒆𝒓𝒓𝒐𝒓𝒊 = 𝒂𝒄𝒐𝒔
< 𝑵𝒊

𝟎, 𝑵𝒊
𝟏 >

 𝑵𝒊
𝟎,   𝑵𝒊

𝟏  
 

Note that the estimation error is defined in terms of the angle between 𝑵𝟎  and 𝑵𝟏 . 
Since the manifold used in this simulation is not defined from surface equation but 
synthesized from the real data, the ground truth for the vertex normal cannot be derived 
analytically. However, it is still possible to compare the change of estimations occurred by 
noise addition, and it is defined as estimation errors in this sense. It is for the surface of 
interest is the human brain in this project. However, to validate the performance with the 
ground truth, the surface model of a unit sphere is also used. 

To compare the performance of the present algorithm related to other conventional, 
Taubin’s method (averaging facet normals weighted by area) and PCA were performed 
along with the proposed method, the Modified Normal Vector Voting algorithm (simply 



referred as ‘Voting’ henceforth). 
 

3.2. Objects: unit sphere and cortex-like surface. 
The objects used in this simulation are a unit sphere and a cortex-like surface (Fig. 9). 

Note that the used sphere model is not an ideal sphere but a 81,920-facet polygon as a 
discrete approximation. The pentagonal pattern of areas of the sphere model is a byproduct 
of the constructing method of subdividing the surface. The cortex-like surface is constructed 
by smoothing the outer cortical surface model obtained from the MRI data of normal control 
#9 in [12] with Weighted-Spherical harmonic representation method which is introduced by 
Chung et al [14]. The result is the summation of Fourier series on the spatial frequencies of 
the original surface with a certain low-pass filter. In this simulation, the bandwidth was 
0.0001 and the number of iteration was 40 resulting highly smooth surface (Fig. 9 right). 
Recall that this smooth cortex-like surface is used as an example of a manifold with a high 
complexity like the real cortical surface.  

 

 
Fig. 9. Smooth surfaces used in simulation; Unit sphere (left) and cortex-like surface (right); Color 

codes the area of triangles referring to each color bar 

 
Gaussian noise was generated by the pseudo-random number generator built in 

MATLAB. The standard deviation of the Gaussian distribution with the zero mean was 1/5, 
1/4, 1/3 and 1/2 of the mean of edges in the whole mesh respectively. The surface added 
Gaussian noise (0, mean/2) was visualized for an instance in Fig. 10. Each effect of the 
addition of Gaussian noise is plotted in Fig. 11 in terms of the areas of triangles in whole 
meshes. It is shown that as the amount of noise increases the variance of areas also increase 
and also that the estimated kernel is more skewed. Note that the distribution of the noisy 
surface with the Gaussian noise (0, mean/2; Fig. 11. right column, the lime line) is similar to 
the one of the unsmoothed raw outer cortical surface (Fig. 11. right column, the dotted line) 

in terms of variance (σ= 1.9185 vs. σ= 2.0505). 



 
Fig. 10. Noisy surfaces used in simulation; Unit sphere (left) and cortex-like surface (right); Color 

codes the area of triangles referring to each color bar 

 

 
Fig. 11. Effect of Gaussian noise on a unit sphere (left) and a cortex-like surface (right); note that 

estimated kernel densities are plotted. 
 

3.3. Results 
Computed errors from Tabuin’s, PCA and Voting methods are plotted (Fig. 12). For 

both the unit sphere and the cortex-like surface the error of the normal estimation increased 
as the amount of variance of the Gaussian noise expanded in all three methods. However the 
means of errors from Voting method (Fig. 12; orange lines) increased with the least gradient, 
and were the least in all cases. Errors from PCA method were the greatest in terms of its 
value and the degree of increase for all cases and so the standard deviation of errors. The 
amounts of errors in angle were mapped with colors for both surface models (Fig. 13). 



 
Fig. 12. Amount of noise (mean/X) vs. mean errors from 3 methods; Error bars indicate standard 

deviations; Horizontal axes are rotated so that the amount of noise increases toward right hand side 

 

 
Fig. 13. Error maps from Taubin’s method (1st column), PCA method (2nd column) and Voting 

method (3rd column); Upper row: the unit sphere model; Lower row: the cortex-like surface; Color 
represents the amount of error on the corresponding vertex in as indicated by the color bar; Lighting 

effects applied for visualization 

 



 

4. Discussion 
For both the sphere and the cortex-like surface models, the Modified Normal Vector 

Voting algorithm estimated the normal vectors with the minimum errors among three 
compared methods. As it is shown in Fig. 12, Voting algorithm showed the best 
performance in all simulated cases, and the improvement of the proposed method in terms 
of the difference in means of errors enhanced as the amount of noise increased. As assumed, 
the larger range of neighbors and the penalization of distant neighbor made the estimation 
less sensitive to the Gaussian noise. 

The noise in real surface model in practice is not necessarily Gaussian. Even the 
similar amount of random noise in terms of variance was generated (3.2.), the regional 
distribution of noise is different from the real data in where the noise is non-uniformly 
distributed. It is possibly due to not only MRI noise in acquisition but the artifacts from 
previous processing such as segmentation and surface construction as already mentioned 
(1.3.(2)). Even so, however, the only algorithm can penalize those noise by its distance was 
Voting method in compared methods. Because of this, the resistance to the noise of Voting 
method can be well preserved. 
 The computational load, on the order hand, may be significant cost for Voting 
method. While Taubin’s and PCA methods take less than 2 minutes (96.9131 seconds and 
62.5791 seconds respectively) except the previous computation of surface normals on Intel®  
Core™2 Quad CPU @ 2.33GHz with 3.25GB RAM to estimate 40,962 vertex normals on a 
single surface, Voting method took more than 20 minutes (1,256.9198 seconds). Though the 
implementation hasn’t been optimized, the high computational load is due to the nature of 
algorithm including exponentially increased numbers of neighbors. In this implementation, 
the average number of 1-ring neighbors was 5.99, whereas the average number of 1-ring and 
2-ring neighbors was 24.00. In case regarding geodesic distance with larger range of 
neighbors, the algorithm should be optimized to extend the proposed algorithm to 
application in practice. 
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Appendix: MATLAB implementation of Modified Normal Vector Voting Estimation 
 

(1) For all triangles in the whole mesh, compute surface normals as the cross 
product of two edges of triangles. In the i-th row of TRI matrix of MNI format, 
the indices of vertices constructing the i-th triangle in counterclockwise fashion 
from the outside. From this information, always outward normals can be 
computed. 
 

(2) For all vertices in the whole mesh, sequentially define each vertex as the ‘center 
vertex’, 

A. Find the triangles that contain the center vertex as 1-ring neighbors. 
B. Find the triangles that contain the vertices of 1-ring neighbors as 2-ring 

neighbors as 
 

r=[];[r1,c1]=find(tri==center); % 1-ring nbr triangles 
for i=1:length(nbr2{center}); % nbr2 cell contains 1-ring nbr vertices id# 
        [tr,tc]=find(tri==nbr2{center}(i)); 
        mr2=[mr2; tr];mc2=[mc2; tc]; 
end; 
    r2=unique(mr2); % 2-ring nbr triangles (including 1-ring nbrs) 

 
C. For 1-, 2-ring neighbors, 

i. Rotate the surface normal computed in (1) as a vote of each triangle. 
ii. Compute the L2norm between the center vertex and the centroid of each triangle. 

iii. Product the each area of triangle normalized by the sum of areas of neighbors and 
the exponential term of the negative L2norm divided by the half of the mean of 
edges from the whole mesh as a weighting factor. 

D. Using the weighting factor above, average all votes from neighbors as an 
estimation for the center vertex 

 


