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Abstract. In this paper, we compare a representative selection of cur-
rent state-of-the-art algorithms in diffusion-weighted magnetic resonance
imaging (dwMRI) tractography, and propose a novel way to quantita-
tively define the connectivity between brain regions. As criterion for the
comparison, we quantify the connectivity computed with the
different methods. We provide initial results using diffusion tensor, spher-
ical deconvolution, ball-and-stick model, and persistent angular struc-
ture (PAS) along with deterministic and probabilistic tractography al-
gorithms on a human DWI dataset. The connectivity is presented for a
representative selection of regions in the brain in matrices and connec-
tograms.Our results show that fiber crossing models are able to reveal
connections between more brain areas than the simple tensor model.
Probabilistic approaches show in average more connected regions but
lower connectivity values than deterministic methods.

1 Introduction

Diffusion-weighted magnetic resonance imaging (dwMRI) provides a non-
invasive way to gain insight into the fibre architecture of the brain white matter,
and thereby opens a window for the in vivo exploration of the anatomy of neu-
ral networks. In the past few years, a number of algorithmic approaches to the
reconstruction of nerve fibre tracts from dwMRI have been proposed, collectively
known as tractography. However, only few attempts have been made so far to quan-
titatively compare these different methods [1]. In this study, we compare a repre-
sentative selection of state-of-the-art tractography algorithms, using connectivity
matrices and connectograms based on a novel quantitative connectivity measure.

Most of the current techniques in dwMRI tractography can be divided into
two major components: local modeling of the diffusion propagator or the fibre
orientation structure in each voxel, and fibre tracking algorithms integrating this
local information into streamlines representing fibre tracts.

Local modelling techniques convert the diffusion weighted MR signal into some
quantity that can be used to determine the local fibre directions. There are two
major classes of algorithms. The first one comprises methods aiming at a more or
less simplified reconstruction of the diffusion propagator. Under the assumption
of Gaussian anisotropic diffusion, this leads to the diffusion tensor (DT) model
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[2], which can represent only one main direction within each voxel and therefore
fails to capture crossing or branchings of fibre populations. More complex models
use e.g. compositions of ellipsoids or cylinders, like the multiple-tensor model [3]
and the ball-and-stick model [4]. Another type of methods provides a less param-
eterized representation of the diffusion propagator. For example, if the q-space is
completely sampled, one may use the spatial Fourier transform to reconstruct a
restricted and blurred version of the diffusion propagator. This method is referred
to as q-space imaging (QSI) or diffusion spectrum imaging (DSI) [5]. If only one
b-value was used, one may compute the radial integral of the diffusion propagator
(q-ball imaging, QBI, [6]) or its persistent angular structure (PAS, [7]).

The second class of methods directly aims at the reconstruction of the dis-
tribution of fibre orientations, e.g., by spherical deconvolution (SD) [8]. This
approach requires an explicit model of the diffusion properties of a single fibre
(convolution kernel). Its results are naturally more directly interpretable in terms
of quantitative connectivity measures, as compared to methods that describe the
diffusion propagator.

A detailed review of these methods can be found in [9]. In our comparison,
we only include such local modelling methods that are suitable for high-angular
resolution diffusion imaging (HARDI) data with a single b-value of b=1000. This
naturally excludes QSI, which would require a complete Cartesian sampling of
the q-space. Also QBI, which requires a higher b-value to provide a better angu-
lar discrimination than the tensor model [6], is not suitable for our dataset. The
selection comprises the DT, multiple ball-and-stick, PAS and SD approaches.
It can be considered representative, because it exemplifies all major approaches
to the problem: (1) models assuming only one main fibre direction (DT), (2)
models that allow for a small number of main fibre directions that has to be de-
termined by some model selection procedure (multiple ball-and-stick), (3) models
that represent the angular structure of the diffusion propagator (PAS), and (4)
approaches that model the fibre orientation density directly, rather than the
diffusion propagator (SD). Most other methods can be assigned to one of these
classes (except QSI).

Based on these local models, tractography techniques integrate the local infor-
mation connecting the voxels. There are two major approaches. With determin-
istic tractography, the reconstructed fibres are exclusively guided by the most
likely directions in each voxel. In contrast, probabilistic fibre tracking methods
repeat the streamlining process multiple times, each time with a new set of direc-
tions drawn from a probability distribution, which is based on the local model.
In this study we evaluate each local model with both of these approaches, except
for the multiple ball-and-stick model, which is only used with probabilistic trac-
tography. The resulting collection of techniques also covers a range of software
packages, which have been used in a large number of studies (see table 1).

For the quantitative comparison of the methods we focused on a type of
information that is most naturally associated with tractography, namely if, and
to what degree, two regions in the brain are connected by nerve fibres.This
measure might also be a useful way to express prior information on connectivity
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within various techniques for modelling functional networks in the brain, such
as dynamic causal modelling [10].

The remainder of the paper is organized as follows. In section 2, the evaluated
dwMRI tractography algorithms and the operational definition of the quantita-
tive connectivity is presented in detail. The results of the experiments are shown
in section 3, and details of difference among methods are discussed in section 4.

2 Methods

Dataset and Regions of Interests. All compared methods are applied to
the HARDI dataset of one human subject. Diffusion images were acquired on
a Siemens 3T Trio scanner with isotropic resolution of 1.7 mm (60 directions,
b=1000s/mm2, GRAPPA/2, NEX3). Data is corrected for subject motion and
registered to the anatomical T1 weighted image.

Fourteen language-related brain regions are selected as the regions of interests
(ROI) for the quantification of anatomical connectivity (see Fig. 1). Eleven of the
selected areas are located on the cortical sheet. In these cases the ROIs are placed
at the interface between white and grey matter, which is defined as those voxels
with fractional anisotropy (FA) greater than 0.15, which neighbour voxels with an
FA of less than 0.15. Three additional regions comprise a mid-sagittal cross section
of the corpus callosum, a horizontal cross section of the pyramidal tract, and the
surface of the thalamus. The size of each selected ROI can also be found in figure 1.

Compared Algorithms. Table 1 summarizes all algorithms and software pack-
ages used for fibre reconstruction. The concept and implementation of each al-
gorithm can be found in the corresponding references.

Definition of Quantitative Anatomical Connectivity. We define a mea-
sure, which reflects the influence the mean neuronal activity in one region has

Fig. 1. Locations of selected regions of interests (ROIs). The names and sizes (number
of voxels) are: 1. anterior superior temporal gyrus (STG) (497); 2. posterior STG
(378); 3. angular gyrus (507); 4. Brodmann area 45 (BA 45) (319); 5. BA 44 (164);
6. precentral gyrus (PCG) ventral (796); 7. PCG dorsol (615); 8. precuneus (731); 9.
corpus callosum (316);10. anterior cingulate (155);11. thalamus (385);12. cortical spinal
tract (180);13. BA45, right hemisphere (400);14. BA44, right hemisphere (347).
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Table 1. DWI tractography methods included in the comparison and related refer-
ences. The computation time is mainly dominated by the local model fitting, and can
be different due to the implementation.

Local Model Comp. Probabilistic Deterministic
Time Tractography Tractography

Diffusion tensor (DT [2]) ∼10 sec. [11] MedINRIA1 [12]
Multiple ball-and-stick [4] ∼2 days FSL2 [4] -
Sph. deconv. (SD[8]) 20-120 min. MRtrix3 [8] BrainVisa4 [13]
Per. ang. str. (PAS[7]) ∼1 month Camino5 [14] Camino [15]

on the mean activity in another region. If WA and WB are the sizes of the start
and target regions, respectively (proportional to the number of output neurons
as well as to the number of voxels), and F is the number of fibres connecting
the two regions (proportional to the number of tracts, random walks, or simi-
lar), then the influence CA→B of the mean activity of the start region NA onto
the mean activity of the target region NB can be derived as follows. The mean
activity NB can be computed as the cumulative activity on the fibre tract NF

divided by the size of the target region WB . The cumulative activity NF is in
turn proportional to the product of the mean activity of the start region NA and
the number of fibres F . The connectivity can then be computed as:

CA→B =
NB

NA
∝ F

WB
, (1)

This connectivity measure is used throughout the comparison.
For probabilistic algorithms, we simulate fibres from each source point (e.g.

voxel) n times. The connectivity is then computed as the ratio of the fibres
that reach the target region divided by n times the number of source points in
region B. For deterministic algorithms, we generate fibres starting from each
voxel with FA> 0.15 in the entire brain. We then count the number of fibres
that run through A and B, as well as the number of fibres that run through A.
The ratio of these two numbers multiplied by the ratio of the regions’ sizes is
then taken as an estimate of the connectivity.

3 Results

Figure 2 shows the logarithm of derived connectivity measures for each method
in the matrix form. The ROIs are sorted with the spectral reordering algorithm
[16] so that ROIs with high connectivity values will be clustered together. To

1 http://www-sop.inria.fr/asclepios/software/MedINRIA/
2 http://www.fmrib.ox.ac.uk/fsl/
3 http://www.nitrc.org/projects/mrtrix/
4 http://brainvisa.info/
5 http://www.cs.ucl.ac.uk/research/medic/camino/

http://www-sop.inria.fr/asclepios/software/MedINRIA/
http://www.fmrib.ox.ac.uk/fsl/
http://www.nitrc.org/projects/mrtrix/
http://brainvisa.info/
http://www.cs.ucl.ac.uk/research/medic/camino/
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avoid confusion, all matrices are presented in the same ordering, which is based
on the connectivity value derived from FSL. By comparing figure 2 with figure
1, we can see that anatomically closer areas are always clustered together, and
the disconnection between the left and right hemisphere is very obvious.

Among different algorithms, the pattern of the connectivity matrix are similar,
but the magnitude of connectivity values differ. A darkly shaded row of cc,
which represents a high connectivity toward the corpus callosum, can be found
throughout all methods. Also, the general pattern of highly connected regions is
consistent across different methods.

The difference between deterministic (right column) and probabilistic (left col-
umn) tractography can also be seen in figure 2. Both deterministic tracking with
DT and SD show significant white areas (i.e., no connection) in the matrices, while
their probabilistic counterparts fill up almost the whole matrices. In addition, for
SD, PAS and DT with probabilistic tractography, the shaded areas are lighter (i.e.,
lower connectivity) than those with deterministic fibre tracking algorithms.

Another way to visualize the quantitative connectivities is by graphs, called
connectograms. The vertices are placed in the positions which approximately rep-
resent the locations of the ROIs, and the edges represent the magnitude of the
connectivity measure. Figure 3 shows the resulting connectograms. In the con-
nectograms, connectivity values above 10−1 are shown in red, 10−2 are in blue,
and 10−3 in green. Edges with connectivity values bellow 10−3 are not shown,
and the arrows represent the direction of connection. All methods show many
arrows pointing toward vertex 9, corpus callosum, which is consistent with the
heavily shaded rows in figure 2. The higher connectivity in deterministic tractog-
raphy and more connections in more complicated local models can also be found
in the connectograms. However, the PAS model shows less edges in probabilistic
than deterministic tractography due to the in average lower connectivity values.

Fig. 2. Connectivity matrices derived from the collection of DWI tractography algo-
rithms in logarithmic scale
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Fig. 3. Connectograms of DWI tractography algorithms. Connectivity values above
10−1 are shown in red, 10−2 are in blue, and 10−3 in green.

Due to the difference in theory and implementation, none of the compared
methods give identical results to another. Nevertheless, there is clearly a great
degree of similarity. The Mantel test is a technique used to estimate the re-
semblance between two proximity matrices computed about the same objects.
This technique computes a covariant statistic between the two matrices, and
then tests it against the null hypothesis of “no association” based on a non-
parametric distribution obtained from permuting rows and columns together in
one matrix. Several covariant statistics have been designed for different purposes,
and we chose the Spearman rank correlation, ρM , as recommended in [17].

The Mantel test based on 1000 random permutations is applied to the connec-
tivity matrices derived from all methods. As expected, all results are significantly
correlated (p = 0, i.e., none of the 1000 permutations can produce a higher cor-
relation). This result not only further confirms the similarity we observe from
the shaded matrices and the connectograms, but also shows the proposed con-
nectivity measure does retain certain structural information which is consistent
across dwMRI tractography methods.

4 Discussion

Differences Among Methods. Considering the nature of the evaluated meth-
ods one would expect two major differences among the methods.

First, deterministic methods as compared to probabilistic ones are expected to
feature a sparser connectivity matrix, i.e. there are fewer connections, but with
higher connectivity values. This is due to the fact that probabilistic tractography
produces a greater variability of fibre trajectories. In deterministic algorithms,
fibres tend to follow the same trajectories to a much higher extent, resulting in
more extreme connectivity values, i.e. two areas are more likely either strongly
connected to not at all.
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Fig. 4. Histograms of the connectivity values in logarithmic scale (zeroes are not
counted). The left panel shows the histogram of the probabilistic tractography meth-
ods, and the right panel shows the deterministic ones.

Looking at the results, it turns out that this prediction clearly holds for the
DT and SD model, but not for PAS. For PAS, the probabilistic PICo algorithm
produces a clearly sparser connectivity matrix and connectogram than deter-
ministic tracking. The reason for this could be the threshold we put at 10−4

in the matrix and 10−3 in the connectogram. Figure 4 shows the histograms of
compared methods. It is clear that the histogram for PAS with deterministic
tracking has a mode in 10−3, and it with PICo in 10−4.

The second prediction would be that, with the same tracking method, local
models which can represent multiple fibre orientations (e.g. PAS, ball-and-stick,
SD) will generate more connections between areas. This is logical because the
additional fibre orientations might lead to new fibres that cross the major tracts.
From our results, this prediction is only partially confirmed, since this trend is
not as strong in the probabilistic tracking.

Concluding Remarks. In this study, we have compared a collection of state-
of-the-art dwMRI tractography algorithms based on a quantitative connectivity
measure. It has been shown that the proposed criterion give similar patterns
across different methods, and also reasonably distinguish algorithms from each
other. The results suggest that local models represent multiple fiber orientations
can reconstruct more connections with a cost of more computation time (see
table 1), as well as the probabilistic tractography. Since the difference in com-
putational cost of tractography algorithms does not differ much, the choice of
local models may dominate the computational resource required for this task.
Although the optimal combination of methods can not be concluded from our
findings, this study proposes a methodology to quatitatively compare different
methods, which is of utmost importance for the community.

Future work will be focused on validating the comparison across different sub-
jects, and to find a proper way to incorporate the quantified brain connectivity
with other brain modelling techniques.
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