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ABSTRACT

We present a streamlined mathematical framework for model-
ing and classifying closed curves from medical images. The
method of gradient vector flow (GVF) snakes is used to ex-
tract object boundaries in the magnetic resonance images of
the human brain. The curvature based arc-length parametriza-
tion is used to parameterize the extracted boundary. A linear
curve registration is then performed to align the orientation of
the curves via the least-squares method. Afterwards, a finite
Fourier series expansion is used to get a smooth functional
representation of the parametrization. Various classification
and regression tree techniques are applied to determine the
best classification techniques in separating the corpus callo-
sum (CC) boundary curves obtained from 12 autistic and 15
normal control subjects. The goal of this paper is to develop
a methodological framework for classifying CC curves into
different clinical groups, and compare the performance of dif-
ferent classification methods.

1. INTRODUCTION

The modern magnetic resonance imaging (MRI) technique
provides extremely detailed anatomical information aboutthe
corpus callosum (CC) shape of the human brain in 1mm scale.
Although various methods such as Talairach space normal-
ization [3], factor analysis [14] and voxel-based morphom-
etry [2] are proposed for modeling and quantifying the CC
shape, there has not been an attempt to classify the corpus
callosum shape itself. In this paper, we present a streamlined
image processing and analysis framework for segmentation,
parametrization, and classification of the CC curves.

The CC boundary curves were extracted using snakes [8,
17] in the midsagittal section of MRIs. Traditional snakes
have problems associated with small capture range and poor
convergence to boundary concavity. To address these prob-
lems, new external force for snakes called thegradient vector
flow (GVF) fields was introduced [17]. The GVF snakes have
advantages over the traditional snakes with their larger cap-
ture range and ability to move into the concavity. Hence, we
used the GVF snakes in extracting the CC boundaries that
have many concave regions (Figure 1).

The extracted CC boundaries were parameterized by arc-
length, which is an often used parametrization in computer
vision [6, 12]. A new algorithm for computing the arc-length
parametrization using curvature is provided. This algorithm
reduces the estimation error in computing the arc-length from
finite points. Afterwards, the parameterized CC curves were
aligned linearly by minimizing the sum of squared errors be-
tween two curves. The average shape of the curves are then
calculated by just averaging the curve over the corresponding
parameters.

As a way to reduce the dimension of the CC curves, the
finite Fourier expansion is used to represent the coordinate
functions. Then the coefficients of the Fourier expansion is

used as predictors in classifying the CC curves into two groups:
normal controls and autism. Although the spherical harmonic
(SPHARM) representation of the coordinates of 2D anatom-
ical surfaces such as the hippocampus has been proposed [4,
16], the Fourier representation of the 1D CC curves has not
been proposed previously.

Classical methods of curve and image classification in-
clude functional data analysis [7], support vector machines
(SVM) [15, 16] and mixture model and EM algorithm [13].
In this study, we mainly applied regression tree based classifi-
cation techniques such as QUEST [11], CRUISE [9], GUIDE
[10], and to determine if it is possible to differentiate autism
purely based on the shape of CC curves. These regression tree
based methods have been widely used in statistical literatures
since there is no implicit statistical assumption about predic-
tor and response variables [1]; however, they have not been
used in classifying curves or images.

2. CLOSED CURVE MODELING

2.1. GVF snakes

A traditional active snake is a 2D curvex(t) = (x(t), y(t))τ

(t ∈ [0, 1]) that moves within an image and converges to the
desired boundary and minimizes the energy functional

E =

∫ 1

0

1

2
(α|x′(t)|2 + β|x′′(t)|2) + Eext(x(t))dt,

whereα andβ are weight parameters that control the snake’s
tension and rigidity,Eext defines the external energy. For
vector norm| · |, we used the length of the vector. Given
image intensity functionI(x, y), the typical external energy
is given as

Eext = −|∇(Gσ ∗ I(x, y))|2, (1)

where∇ is the gradient operator andGσ is a 2D Gaussian
kernel with standard deviationσ. A snake that minimizesE
must satisfy a force balance equation:

Fint + Fext = 0,

whereFint = αx
′′(t) − βx

′′′′(t) andFext = −∇Eext. The
GVF snake introduces a new external forceFext = (u, v)τ ,
which is the solution to the Euler equation

{

µ∆2u − (u − fx)(f2
x + f2

y ) = 0
µ∆2v − (v − fy)(f2

x + f2
y ) = 0

(2)

whereµ is the regularization parameter andf(x, y) is the
edge map [17]. The major advantages of the GVF snakes
are their large capture range and their capability to converge
to the concavities of boundaries. Based on this new external
force, we minimized the energy functional and obtained the
CC boundaries (Figure 1).



Fig. 1. Representative results of the exacted CC curves using
the GVF snakes.

2.2. Curvature based arc-length parametrization

For given points{pi = (xi, yi)
τ}n

i=0 (pn = p0) that form a
closed CC curve, our goal is to find an arc-length parametriza-
tion γ(s) = (x(s), y(s))τ , s ∈ [0, L] such that

γ(si) = (xi, yi)
τ , i = 0, 1, · · · , n, (3)

whereL is the total arc length of the CC curve. The curvature
function is defined as

k(s) = |γ′(s)| = lim
∆s→0

|γ(s + ∆s) − γ(s)|/∆s

which implies∆s ≈ |γ(s + ∆s) − γ(s)|/k(s) for small∆s.
For convenience, we denotep−1 = pn−1 andpn+1 = p1. si’s
in (3) is calculated by

s0 = 0, si+1 = si +
|pi+1 − pi|

k(si)
,

wherek(si) is calculated by the following formula [5]

k(si) = di ·
4A(pi−1, pi, pi+1)

|pi−1 − pi| · |pi − pi+1|
(4)

whereA(pi−1, pi, pi+1) is area of the triangle with vertices
pi−1, pi andpi+1, anddi = 1, if the triangle is inside the
curve; -1 otherwise. Thenk(s) for arbitrarys is estimated by
linear interpolation

k(s) = si+1−s

si+1−si

k(si) + s−si

si+1−si

k(si+1), s ∈ [si, si+1].

Since each CC curve has different arc-length, we need further
reparameterizeγ by mapping the parameter space[0, L] onto
a unit circle. Consider a linear mappingθ = 2π s

L
which

maps[0, L] to [0, 2π]. Then our final parametrization is given
by ̺(θ) = γ( θ

2π
L).

2.3. Curve alignment

After the parametrization, a linear curve alignment is neces-
sary to factor out the orientation and translational difference.
We do not need to factor out the size difference since our
parametrization basically maps a CC curve onto the unit circle
effectively normalizing the global size.
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Fig. 2. 27 corpus callosum boundary curves used in the study.

Suppose we have parameterized curves̺1 and̺2 using
the previous section. Forn control points for each of curves
̺1 and̺2,

ˆ̺1 = {̺1(
2πi

n
)}n

i=0, ˆ̺2 = {̺2(
2πi

n
)}n

i=0,

the corresponding coordinates in the Cartesian coordinatesys-
tem is given by(x1,i, y1,i) and(x2,i, y2,i). Then we define the
warping mapA : L2([0, 2π]) → L2([0, 2π]):

A(θ,a,b,t)((x1,i, y1,i)) =

(

cos θ sin θ
− sin θ cos θ

) (

x1,i+t − a
y1,i+t − b

)

with conventionxn+k = xk, yn+k = yk. Then the linear
warping between̺̂ 1 and ˆ̺2 is given by minimizing the dis-
crepancy

A(θ∗,a∗,b∗,t∗) = arg min
(θ,a,b,t)

n
∑

i=1

‖A(θ,a,b,t)(ˆ̺1) − ˆ̺2‖2

where‖ · ‖2 is thel2-norm.
Figure 2 shows the all 27 CC curves that were linearly

aligned. 15 curves are from the control group and the remain-
ing 12 are from the high functioning autistic group. Figure 3
shows the averages shapes of the two groups after the curve
alignment.

2.4. Fourier representation

The natural basis on a unit circle is given by

f2n−1 = cos(nx), f2n = sin(nx), n = 1, 2, · · · .

with a constant termf0 = 1/
√

2. Then{fi}∞i=0 forms a com-
plete orthonormal basis set in Hilbert spaceL2([0, 2π]), the
space of square integrable functions on the unit circle. Thein-
ner product is defined as〈f, g〉 = 1

π

∫ 2π

0
f(x)g(x)dx. Since

L2([0, 2π]) is separable, foru ∈ L2([0, 2π]), we have the
Fourier expansion

u =

∞
∑

i=0

〈u, fi〉fi.
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Fig. 3. The average shapes of control and autistic groups.
The red curve is the control subject and the black curve is the
autistic subjects.
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Fig. 4. The finite Fourier expansions of closed curve with
different(M, N)’s.

Based on the convergence of Fourier expansion, we approxi-
mate the CC curve̺(s) = (x(s), y(s)) by

̺ ≈ (
M
∑

i=0

〈x, fi〉fi,
N

∑

j=0

〈y, fj〉fj).

Figure 4 shows the Fourier series representation with increas-
ing degrees ofM andN . The Fourier coefficients〈x, fi〉, 〈y, fj〉
fully characterize the shape variation of the CC curves and
will be used as the predictors for classification in Section 3.

3. CLASSIFICATION OF CURVES

First, we applied different classification techniques to simu-
lated curves. We generated two closed curves̺1 and̺2 (Fig-
ure 5). Two shape of two curves are different in the par to the
bottom arc. 100 curves with Gaussian white noiseN(µ, σ2)
are generated from̺1 and another 100 curves withN(µ, σ2)

Fig. 5. Curve̺1 (left) is generated by a smooth spline while
curve̺2 (right) is generated from̺1 by adding a small convex
part.

Methods\ D(σ) 0.1 0.2 0.4 0.8 1.6
LDA 0 0 0 0.08 0.25
CRUISE 0 0 0 0.06 0.34
GUIDE 0 0 0 0.11 0.40
QUEST 0 0.02 0.06 0.11 0.37

Table 1. The classification results of simulated data. Each
entry is the misclassification rate for a particular classification
algorithm at differentD(σ) level.

noise are generated from̺2. We computed the amount of
noise with respect to signal using measure

D(σ) =
σ

‖̺1 − ̺2‖∞
,

where‖ · ‖ is L∞-norm. D(σ) represent the relative amount
of noise difference between two curves.

After finite Fourier expansion is calculated for each curve,
we use half of curves in each group as the training set and the
other half as the test set. The classical methods applied to
the simulated curves are linear discriminant analysis (LDA).
We have also applied the regression tree techniques including
QUEST, which is a fast, unbiased binary decision tree method
[11], CRUISE, which stands for Classification Rule with Un-
biased Interaction Selection and Estimation [9], GUIDE, a
generalized unbiased regression tree algorithm [10]. The clas-
sification results for the simulated curves are shown in Table
1. As expected, the difficulty of classification increased with
increasingD(σ) as shown in Table 1. LDA performed best
since LDA assumes Gaussian noise which is exactly the case
for our simulated data.

For the actual CC curves, we picked 8 of the control group
and 6 of the autistic group as the training set, the rest of the
data as the test set. The misclassification rates for the ac-
tual data are 0.25 (LDA), 0.22 (CRUISE), 0.15 (GUIDE) and
0.37(QUEST).

4. CONCLUSION

In this paper, we presented a streamlined framework for the
2D corpus callosum boundary curve extraction, parametriza-
tion and classification. For the CC boundary extraction, the



GVF snake is used. For parameterizing the CC curve, we
used a new curvature-based arc-length parametrization. Af-
terwards, as a scheme for data reduction, the Fourier repre-
sentation is used to characterize the CC curves using only
a finite number of Fourier coefficients. Then these coeffi-
cients are used in classifying both the simulated and the actual
autism data set. We conclude that among many regression
tree based techniques, GUIDE provides the smallest misclas-
sification error in differentiating the CC curves between the
two groups.
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