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ABSTRACT used as predictors in classifying the CC curves into two gsou
We present a streamlined mathematical framework for mode tormal controls and autism. Although the spherical harmoni
b ESPHARM) representation of the coordinates of 2D anatom-

ing and classifying closed curves from medical images. Th )

method of gradient vector flow (GVF) snakes is used to ex'—Cal surfaces such as the hippocampus has been proposed [4,
org L . : 1?], the Fourier representation of the 1D CC curves has not

tract object boundaries in the magnetic resonance images BLen proposed previous!

the human brain. The curvature based arc-length parametriz brop P Y-

L . . Classical methods of curve and image classification in-
tion is used to parameterize the extracted boundary. Amnee(‘:lude functional data analysis [7], support vector machine
curve registration is then performed to align the orientatf y » SUPP

the curves via the least-squares method. Afterwards, &ﬁniir?m\ii)s[tt?j’yl\?v]eamngirr:r;/x;l:)rpelien:jorizlrzggioi,\ilr:(lagt?;zzgiﬁ%i]s'
Fourier series expansion is usgd t_o get a _smooth fu_n_ctlonclmion techniques such as QUEST [11], CRUISE [9], GUIDE
representation of the parametrization. Various classidina

. . : : {_'10], and to determine if it is possible to differentiateiant
and regression tree techniques are applied to determine t Urely based on the shape of CC curves. These regression tree
best classification techniques in separating the corpus-cal purely P : g

sum (CC) boundary curves obtained from 12 autistic and 1g%izdtr1$teh'c;dr?oh$:1/ eliiesqg:'lgt%glusgs I|[r]1 S?(:fg%%' lg'.ﬁemu
normal control subjects. The goal of this paper is to develo§I ' implict : _' umpti Ut
. . .—_for and response variables [1]; however, they have not been
a methodological framework for classifying CC curves into : e :
. - . used in classifying curves or images.
different clinical groups, and compare the performancefef d
ferent classification methods.
2. CLOSED CURVE MODELING

1. INTRODUCTION 2.1. GVF snakes

The modern magnetic resonance imaging (MRI) techniqué traditional active snake is a 2D curugt) = (z(t),y(t))"
provides extremely detailed anatomical information altbet (¢ € [0, 1]) that moves within an image and converges to the
corpus callosum (CC) shape of the human brain in 1mm scaléesired boundary and minimizes the energy functional
Although various methods such as Talairach space normal- '

ization [3], factor analysis [14] and voxel-based morphom- _ iy |2 "y 2

etry [2] are proposed for modeling and quantifying the CC E = / 5(a|w OF + 82" (1) + Pext(@(t))dt,
shape, there has not been an attempt to classify the corpus

callosum shape itself. In this paper, we present a streathlin Wherea and;3 are weight parameters that control the snake’s
image processing and analysis framework for segmentatiof€nsion and rigidity, Eext defines the external energy. For
parametrization, and classification of the CC curves. vector norm| - |, we used the length of the vector. Given

The CC boundary curves were extracted using snakes [§hage intensity functior (z, y), the typical external energy
17] in the midsagittal section of MRIs. Traditional snakes!S 9V€n as
have problems associated with small capture range and poor )
convergence to boundary concavity. To address these prob- Eext = —|V(GoxI(z,y)), (1)
lems, new external force for snakes calledghadient vector . . . .
flow (GVF) fields was introduced [17]. The GVF snakes have""herev_IS the gradient ppgrator ard, is a 2D. (_‘;agssmn
advantages over the traditional snakes with their largpf ca kernel W!th standard deviation A s_nake that minimize
ture range and ability to move into the concavity. Hence, wenust satisfy a force balance equation:
used the GVF snakes in extracting the CC boundaries that
have many concave regions (Figure 1).

The extracted CC boundaries were parameterized by ar(v}\?hereFint — aa () — Bz (t) andFext = —V Fext. The
Ie.n.gth, which is an often .used parametn;atmn in computeéVF snake introduces a new external folegyt — (u, v)",
vision [6, .12].' A new algorithm fo_r comp_utmg the_arc—len_gth which is the solution to the Euler equation
parametrization using curvature is provided. This aldonit
r_ec_iuces_the estimation error in computln_g the arc-lengtmfr A2y — (u— f)(f2+f2) = 0
finite points. Afterwards, the parameterized CC curves were 2 (0 2 5 _ (2)

. : L pA% v — (v = fy)(f7 + f7) 0
aligned linearly by minimizing the sum of squared errors be-

tween two curves. The average shape of the curves are thﬁﬁ‘lereu is the regularization parameter arfdz,y) is the

calculated by just averaging the curve over the correspondi edge map [17]. The major advantages of the GVF snakes

parameters. _ _ are their large capture range and their capability to carever
As a way to reduce the dimension of the CC curves, thg, the concavities of boundaries. Based on this new external

finite Fourier expansion is used to represent the coordinat,%rce, we minimized the energy functional and obtained the
functions. Then the coefficients of the Fourier expansion igc poundaries (Figure 1).

Fint + Fext=0,



Fig. 1. Representative results of the exacted CC curves usin|9, I bound dinth q
the GVE snakes. ig. 2. 27 corpus callosum boundary curves used in the study.
2.2. Curvaturebased arc-length parametrization Suppose we have parameterized curvgsind o2 using

the previous section. Far control points for each of curves

For given points{p; = (z;,v:)" }1~o (pn = po) that form a d
. 2 ._ 01 andoaz,
closed CC curve, our goal is to find an arc-length parametriza
tion~(s) = (z(s),y(s))",s € [0, L] such that 2mi 271

01 ={o1(—)}izo, 02 = {02(—)}izo;

. n n
’Y(S’L) = (I’iay’i)Tv 7’:0517"' y 1y (3) . . . . .
the corresponding coordinates in the Cartesian coordayate
whereL is the total arc length of the CC curve. The curvaturetem is given by(z1 ;, y1 ;) and(z2.4, y2.;). Then we define the

function is defined as warping mapA : L2([0, 27]) — L2([0, 27]):
k(s)=17(s)| = lim |y(s+ As) —(s)|/As cosf sinf T1i4t —
As—0 . ) = Litt — @
A(G,a,byt)((xlmyl,l)) = ( _sin® cosf ) ( Yiitt — b )

which impliesAs =~ |y(s + As) — v(s)|/k(s) for small As.

For convenience, we dengte; = p,,_; andp,,.1 = p1. s;’s  with conventionz,,.x = %k, Yn+x = yx. Then the linear

in (3) is calculated by warping betweerd; and g is given by minimizing the dis-
crepancy

[pisr = pil

k(Sl) ’

wherek(s;) is calculated by the following formula [5]

50 =0, 841 =s5; +

n
A(gx qx b vy = arg (9{2,1&) ; | A6,0,5,)(01) — 02]|2

4A(pi—1,pi; pit1) where|| - ||z is thel2-norm.
hls) = di- [pim1 — pil - |Pi — Pig1] @ Figure 2 shows the all 27 CC curves that were linearly
aligned. 15 curves are from the control group and the remain-
where A(p;—1,pi, pi+1) is area of the triangle with vertices ing 12 are from the high functioning autistic group. Figure 3

pi—1,pi andp;41, andd; = 1, if the triangle is inside the shows the averages shapes of the two groups after the curve
curve; -1 otherwise. Theh(s) for arbitrarys is estimated by alignment.

linear interpolation

. _ 2.4. Fourier representation
k(s) = 2 ="k(si) + 752 =k(si11), s € [s4,8i41]- ep

Si+1—84 Si+1—Sq

The natural basis on a unit circle is given by
Since each CC curve has different arc-length, we need furthe
reparameterize by mapping the parameter spg6eL] onto fon—1 = cos(nz), fon, =sin(nz), n=1,2,---.
a unit circle. Consider a linear mappiig= 27+ which
maps[0, L] to [0, 27]. Then our final parametrization is given with a constant ternf, = 1/v/2. Then{f;}3, forms a com-
by 0(6) = y(=L). plete orthonormal basis set in Hilbert spac¥[0, 27]), the
space of square integrable functions on the unit circle.ifhe
ner product is defined &y, g) = % 02” f(z)g(x)dz. Since
After the parametrization, a linear curve alignment is sece L*([0,27]) is separable, for. € L*([0,2x]), we have the
sary to factor out the orientation and translational déffere. ~ Fourier expansion
We do not need to factor out the size difference since our -
parametrization basically maps a CC curve onto the unifecirc w— Z<“’ i f.
effectively normalizing the global size.

2.3. Curvealignment

=0



control group
autistic group| |

Fig. 5. Curvep; (left) is generated by a smooth spline while
curveps (right) is generated from; by adding a small convex
part.
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Fig. 3. The average shapes of control and autistic groups. CRUISE

The red curve is the control subject and the black curve is the GUIDE
autistic subjects. QUEST
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Table 1. The classification results of simulated data. Each
entry is the misclassification rate for a particular clasatfon
algorithm at differentD (o) level.

60 60

40 40

20 T 20

% 20 s 40 s 20 20 30 40 50 noise are generated fromy;. We computed the amount of
M=N=8 M=N=16 noise with respect to signal using measure
80 80
g

60 60 D(a-) =

o1 — 02|l
40 40
20 ) 20 where|| - || is L*°-norm. D(o) represent the relative amount
0 0 of noise difference between two curves.

After finite Fourier expansion is calculated for each curve,
we use half of curves in each group as the training set and the
other half as the test set. The classical methods applied to
the simulated curves are linear discriminant analysis (.DA
We have also applied the regression tree techniques imgudi
QUEST, which is a fast, unbiased binary decision tree method

Fig. 4. The finite Fourier expansions of closed curve with
different(M, N)’s.

mate the CC curve(s) = (z(s), y(s)) by biased Interaction Selection and Estimation [9], GUIDE, a
generalized unbiased regression tree algorithm [10]. T ¢
M N sification results for the simulated curves are shown in&abl
o ~ (Y (z f)fi Z(y, i) fi)- 1. As expected, the difficulty of classification increasethwi
i=0 3=0 increasingD (o) as shown in Table 1. LDA performed best

) ) ) . o since LDA assumes Gaussian noise which is exactly the case
Figure 4 shows the Fourier series representation with@®ere o, our simulated data.

ing degrees ofi/ andN. The Fourier coefficients:, fi), (y, f;) For the actual CC curves, we picked 8 of the control group
fully characterize the shape variation of the CC curves andq 6 of the autistic group as the training set, the rest of the
will be used as the predictors for classification in Section 3 j5t5 as the test set. The misclassification rates for the ac-

tual data are 0.25 (LDA), 0.22 (CRUISE), 0.15 (GUIDE) and
3. CLASSIFICATION OF CURVES 0.37(QUEST).

First, we applied different classification techniques toisi 4. CONCLUSION

lated curves. We generated two closed cumieand o, (Fig-

ure 5). Two shape of two curves are different in the par to thén this paper, we presented a streamlined framework for the
bottom arc. 100 curves with Gaussian white ndiég:,#2) 2D corpus callosum boundary curve extraction, parametriza
are generated from;, and another 100 curves witki(11,0?)  tion and classification. For the CC boundary extraction, the



GVF snake is used. For parameterizing the CC curve, w§l0]
used a new curvature-based arc-length parametrization. Af
terwards, as a scheme for data reduction, the Fourier repre-
sentation is used to characterize the CC curves using on-l[yi
a finite number of Fourier coefficients. Then these coeffil1l]
cients are used in classifying both the simulated and theahct
autism data set. We conclude that among many regression
tree based techniques, GUIDE provides the smallest misclaFlZ]
sification error in differentiating the CC curves betweea th

two groups.
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