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Abstract. This paper presents feature-based morphometry (FBM), a
new, fully data-driven technique for identifying group-related differences
in volumetric imagery. In contrast to most morphometry methods which
assume one-to-one correspondence between all subjects, FBM models im-
ages as a collage of distinct, localized image features which may not be
present in all subjects. FBM thus explicitly accounts for the case where
the same anatomical tissue cannot be reliably identified in all subjects
due to disease or anatomical variability. A probabilistic model describes
features in terms of their appearance, geometry, and relationship to sub-
groups of a population, and is automatically learned from a set of sub-
ject images and group labels. Features identified indicate group-related
anatomical structure that can potentially be used as disease biomarkers
or as a basis for computer-aided diagnosis. Scale-invariant image features
are used, which reflect generic, salient patterns in the image. Experiments
validate FBM clinically in the analysis of normal (NC) and Alzheimer’s
(AD) brain images using the freely available OASIS database. FBM
automatically identifies known structural differences between NC and
AD subjects in a fully data-driven fashion, and obtains an equal error
classification rate of 0.78 on new subjects.

1 Introduction

Morphometry aims to automatically identify anatomical differences between
groups of subjects, e.g. diseased or healthy brains. The typical computational
approach taken to morphometry is a two step process. Subject images are first
geometrically aligned or registered within a common frame of reference or at-
las, after which statistics are computed based on group labels and measure-
ments of interest. Morphometric approaches can be contrasted according to the
measurements upon which statistics are computed. Voxel-based morphometry
(VBM) involves analyzing intensities or tissue class labels [1,2]. Deformation or
tensor-based morphometry (TBM) analyzes the deformation fields which align
subjects [3,4,5]. Object-based morphometry analyzes the variation of pre-defined
structures such as cortical sulci [6].

A fundamental assumption underlying most morphometry techniques is that
inter-subject registration is capable of achieving one-to-one correspondence
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between all subjects, and that statistics can therefore be computed from mea-
surements of the same anatomical tissues across all subjects. Inter-subject regis-
tration remains a major challenge, however, due to the fact that no two subjects
are identical; the same anatomical structure may vary significantly or exhibit
distinct, multiple morphologies across a population, or may not be present in
all subjects. Coarse linear registration can be used to normalize images with
respect to global orientation and scale differences, however it cannot achieve
precise alignment of fine anatomical structures. Deformable registration has the
potential to refine the alignment of fine anatomical structures, however it is dif-
ficult to guarantee that images are not being over-aligned. While deformable
registration may improve tissue overlap, in does not necessarily improve the ac-
curacy in aligning landmarks, such as cortical sulci [7]. Consequently, it may
be unrealistic and potentially detrimental to assume global one-to-one corre-
spondence, as morphometric analysis may be confounding image measurements
arising from different underlying anatomical tissues [8].

Feature-based morphometry (FBM) is proposed specifically to avoid the as-
sumption of one-to-one inter-subject correspondence. FBMadmits that correspon-
dence may not exist between all subjects and throughout the image, and instead
attempts to identify local patterns of anatomical structure for which correspon-
dence between subsets of subjects is statistically probable. Such local patterns
are identified and represented as distinctive scale-invariant features [9,10,11,12],
i.e. generic image patterns that can be automatically extracted in the image by
a front-end salient feature detector. A probabilistic model quantifies feature vari-
ability in terms of appearance, geometry, and occurrence statistics relative to sub-
ject groups. Model parameters are estimated using a fully automatic, data-driven
learning algorithm to identify local patterns of anatomical structure and quantify
their relationships to subject groups. The local feature thus replaces the global at-
las as the basis for morphometric analysis. Scale-invariant features are widely used
in the computer vision literature for image matching, and have been extended to
matching 3D volumetric medical imagery [11,12]. FBM follows from a line of re-
cent research modeling object appearance in photographic imagery [13] and in 2D
slices of the brain [14], and extends this research to address group analysis, and to
operate in full 3D volumetric imagery.

2 Feature-Based Morphometry (FBM)

2.1 Local Invariant Image Features

Images contain a large amount of information, and it is useful to focus compu-
tational resources on interesting or salient features, which can be automatically
identified as maxima of a saliency criterion evaluated throughout the image.
Features associated with anatomical structures have a characteristic scale or
size which is independent of image resolution, and a prudent approach is thus to
identify features in a manner invariant to image scale [9,10]. This can be done
by evaluating saliency in an image scale-space I(x, σ) that represents the image
I at location x and scale σ. The Gaussian scale-space, defined by convolution
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of the image with the Gaussian kernel, is arguably the most common in the
literature [15,16]:

I(x, σ) = I(x, σ0) ∗ G(x, σ − σ0), (1)

where G(x, σ) is a Gaussian kernel of mean x and variance σ, and σ0 represents
the scale of the original image. The Gaussian scale-space has attractive properties
including non-creation and non-enhancement of local extrema, scale-invariance,
and causality and arises as the solution to the heat equation [16]. Derivative
operators are commonly used to evaluate saliency in scale-space [9,10], and are
motivated by models of image processing in biological vision systems [17]. In this
paper, geometrical regions gi = {xi, σi} corresponding to local extrema of the
difference-of-Gaussian (DOG) operator are used [9]:

(xi, σi) = local argmax
x,σ

{ ∣∣∣∣dI(x, σ)
dσ

∣∣∣∣
}

. (2)

Each identified feature is a spherical region defined geometrically by a location
xi and a scale σi, and the image measurements within the region, denoted as ai.

2.2 Probabilistic Model

Let F = {f1, . . . , fN} represent a set of N local features extracted from a set of
images, where N is unknown. Let T represent a geometrical transform bringing
features into coarse, approximate alignment with an atlas, e.g. a similarity or
affine transform to the Talairach space [18]. Let C represent a discrete random
variable of the group from which subjects are sampled, e.g. diseased, healthy.
The posterior probability of (T, C) given F can be expressed as:

p(C, T |F ) =
p(C, T )
p(F )

p(F |C, T ) =
p(C, T )
p(F )

N∏
i

p(fi|C, T ), (3)

where the first equality results from Bayes rule, and the second from the as-
sumption of conditional feature independence given (C, T ). Note that while
inter-feature dependencies in geometry and appearance are generally present,
they can largely be accounted for by conditioning on variables (C, T ). p(fi|C, T )
represents the probability of a feature fi given (C, T ). p(C, T ) represents a joint
prior distribution over (C, T ). p(F ) represents the evidence of feature set F .

An individual feature is denoted as fi = {ai, αi, gi, γi}. ai represents feature
appearance (i.e. image measurements), αi is a binary random variable repre-
senting valid or invalid ai, gi = {xi, σi} represents feature geometry in terms of
image location xi and scale σi, and γi is a binary random variable indicating the
presence or absence of geometry gi in a subject image. The focus of modeling is
on the conditional feature probability p(fi|C, T ):

p(fi|C, T ) = p(ai, αi, γi, gi|T, C) = p(ai|αi)p(αi|γi)p(gi|γi, T )p(γi|C), (4)
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where the 2nd equality follows from several reasonable conditional independence
assumptions between variables. p(ai|αi) is a density over feature appearance ai

given feature occurrence αi, p(αi|γi) is a Bernoulli distribution of feature occur-
rence αi given the occurrence of a consistent geometry γi, p(gi|γi, T ) is a density
over feature geometry given geometrical occurrence γi and global transform T ,
and p(γi|C) is a Bernoulli distribution over geometry occurrence given group C.

2.3 Learning Algorithm

Learning focuses on identifying clusters of features which are similar in terms of
their group membership, geometry and appearance. Features in a cluster repre-
sent different observations of the same underlying anatomical structure, and can
be used to estimate the parameters of distributions in Equation (4).

Data Preprocessing: Subjects are first aligned into a global reference frame,
and T is thus constant in Equation (3). At this point, subjects have been normal-
ized according to location, scale and orientation, and the remaining appearance
and geometrical variability can be quantified [19]. Image features are then de-
tected independently in all subject images as in Equation (2).

Clustering: For each feature fi, two different clusters or feature sets Gi and Ai

are identified, where fj ∈ Gi are similar to fi in terms of geometry, and fj ∈ Ai

are similar to fi in appearance. First, set Gi is identified based on a robust binary
measure of geometry similarity. Features fi and fj are said to be geometrically
similar if their locations and scales differ by less than error thresholds εx and εσ.
In order to compute geometrical similarity in a manner independent of feature
scale, location difference is normalized by feature scale σi, and scale difference
is computed in the log domain. Gi is thus defined as:

Gi = {fj : ||xi − xj ||/σi ≤ εx ∧ |log(σj/σi)| ≤ εσ } . (5)

Next, set Ai is identified using a robust measure of appearance similarity, where
fi is said to be similar to fj in appearance if the difference between their ap-
pearances is below a threshold εai . Ai is thus defined as a function of εai :

Ai(εai) = {fj : ||ai − aj || ≤ εai} , (6)

where here || || is the Euclidean norm. While a single pair of geometrical thresh-
olds (εx, εσ) is applicable to all features, εai is feature-specific and set to:

εai = sup
{

εa ∈ [0,∞) : 1 ≤ |Ai(εa) ∩ Gi ∩ Ci|
|Ai(εa) ∩ Gi ∩ Ci|

}
, (7)

where Ci is the set of features having the same group label as fi, and εai is
thus set to the maximum threshold such that Ai is still more likely than not to
contain geometrically similar features from the same group Ci. At this point,
Gi ∩ Ai is a set of samples of model feature fi, and the informativeness of fi

regarding a subject group Cj is quantified by the likelihood ratio:

p(fi|Cj , T )
p(fi|Cj , T )

=
|Ai ∩ Gi ∩ Cj |
|Ai ∩ Gi ∩ Cj |

. (8)
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The likelihood ratio explicitly measures the degree of association between a
feature and a specific subject group and lies at the heart of FBM analysis.
Features can be sorted according to likelihood ratios to identify the anatomical
structures most indicative of a particular subject group, e.g. healthy or diseased.
The likelihood ratio is also operative in FBM classification:

C∗ = argmax
C

{
p(C, T |F )
p(C, T |F )

}
= argmax

C

{
p(C, T )
p(C, T )

∏
i

p(fi|C, T )
p(fi|C, T )

}
, (9)

where C∗ is the optimal Bayes classification of a new subject based on a set of
features F in the image, and can be used for computer-aided diagnosis.

3 Experiments

FBM is a general analysis technique, which is demonstrated and validated here in
the analysis of Alzheimer’s disease (AD), an important, incurable neurodegener-
ative disease affecting millions worldwide, and the focus of intense computational
research [20,21,22,23]. Experiments use OASIS [22], a large, freely available data
set including 98 normal (NC) subjects and 100 probable AD subjects ranging
clinically from very mild to moderate dementia. All subjects are right-handed,
with approximately equal age distributions for NC/AD subjects ranging from
60+ years with means of 76/77 years. For each subject, 3 to 4 T1-weighted
scans are acquired, gain-field corrected and averaged in order to improve the
signal/noise ratio. Images are aligned within the Talairach reference frame via
affine transform T and the skull is masked out [23]. In our analysis, the DOG
scale-space [9] is used to identify feature geometries (xi, σi), appearances ai are
obtained by cropping cubical image regions of side length 4

√
σi centered on xi

and then scale-normalizing to (11 × 11 × 11)-voxel resolution. Features could
be normalized according to a canonical orientation to achieve rotation invari-
ance [12], this is omitted here as subjects are already rotation-normalized via T
and further invariance reduces appearance distinctiveness. Approximately 800
features are extracted in each (176 × 208 × 176)-voxel brain volume.

Model learning is applied on a randomly-selected subset of 150 subjects (75
NC, 75 AD). Approximately 12K model features are identified, these are sorted
according to likelihood ratio in Figure 1. While many occur infrequently (red
curve, low p(fi|T )) and/or are uninformative regarding group (center of graph),
a significant number are strongly indicative of either NC or AD subjects (extreme
left or right of graph). Several strongly AD-related features correspond to well-
established indicators of AD in the brain. Others may provide new information.
For examples of AD-related features shown in Figure 1, feature (a) corresponds to
enlargement of the extracerebral space in the anterior Sylvian sulcus; feature (b)
corresponds to enlargement of the temporal horn of the lateral ventricle (and one
would assume a concomitant atrophy of the hippocampus and amygdala); feature
(c) corresponds to enlargement of the lateral ventricles. For NC-related features,
features (1) (parietal lobe white matter) and (2) (posterior cingulate gyrus)
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Fig. 1. The blue curve plots the likelihood ratio ln p(fi|AD,T )
p(fi|NC,T )

of feature occurrence in
AD vs. NC subjects sorted in ascending order. Low values indicate features associated
with NC subjects (lower left) and high values indicate features associated with AD
subjects (upper right). The red curve plots feature occurrence probability p(fi|T ).
Note a large number of frequently-occurring features bear little information regarding
AD or NC (center). Examples of NC (1-3) and AD (a-c) related features are shown.

correspond to non-atrophied parenchyma and feature (3) (lateral ventricle) to
non-enlarged cerebrospinal fluid spaces.

FBM also serves as a basis for computer-aided diagnosis of new subjects.
Classification of the 48 subjects left out of learning results in an equal er-
ror classification rate (EER) of 0.781. Classification based on models learned
from randomly-permuted group labels is equivalent to random chance (EER =
0.50, stdev = 0.02), suggesting that the model trained on genuine group labels
is indeed identifying meaningful anatomical structure. A direct comparison with
classification rates in the literature is difficult due to the availability, variation
and preprocessing of data sets used. Rates as high as 0.93 are achievable using
support vector machines (SVMs) focused on regions of interest [21]. While rep-
resentations such as SVMs are useful for classification, they require additional
interpretation to explain the link between anatomical tissue and groups [5].

4 Discussion

This paper presents and validates feature-based morphometry (FBM), a new,
fully data-driven technique for identifying group differences in volumetric
images. FBM utilizes a probabilistic model to learn local anatomical patterns in
the form of scale-invariant features which reflect group differences. The primary

1 The EER is a threshold-independent measure of classifier performance defined as
the classification rate where misclassification error rates are equal.
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difference between FBM and most morphological analysis techniques in the lit-
erature is that FBM represents the image as a collage of local features that need
not occur in all subjects, and thereby offers a mechanism to avoid confounding
analysis of tissues which may not be present or easily localizable in all subjects,
due to disease or anatomical variability. FBM is validated clinically on a large
set images of NC and probable AD subjects, where anatomical features consis-
tent with well-known differences between NC and AD brains are automatically
identified in a set of 150 training subjects. Due to space constraints only a few
examples are shown here. FBM is potentially useful for computer-aided diagno-
sis, and classification of 48 test subjects achieves a classification ERR of 0.78.
As validation makes use of a large, freely available data set, reproducability and
comparison with other techniques in the literature will be greatly facilitated.

FBM does not replace current morphometry techniques, but rather provides a
new complementary tool which is particularly useful when one-to-one correspon-
dence is difficult to achieve between all subjects of a population. The work here
considers groupdifferences in terms of feature/groupco-occurrence statistics, how-
ever most features do occur (albeit at different frequencies) in multiple groups, and
traditional morphometric analysis on an individual feature basis is a logical next
step in further characterizing groupdifferences. In terms of FBM theory, the model
could be adapted to account for disease progression in longitudinal studies by con-
sidering temporal groups, to help in understanding the neuroanatomical basis for
progression from mild cognitive impairment to AD, for instance. A variety of dif-
ferent scale-invariant features types exist, based on image characteristics such as
spatial derivatives, image entropy and phase. These could be incorporated into
FBM to model complementary anatomical structures, thereby improving analy-
sis and classification. The combination of classification and permutation testing
performed here speaks to the statistical significance of the feature ensemble iden-
tified by FBM, and we are investigating significance testing for individual features.
FBM is general and can be used as a tool to study a variety of neurological dis-
eases, and we are currently investigating Parkinson’s disease. Future experiments
will involve a comparison of morphological methods on the OASIS data set.
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