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ABSTRACT

In this paper we describe a new tool for interactive free-form fair
surface design. By generalizing classical discrete Fourier analysis
to two-dimensional discrete surface signals— functions defined on
polyhedral surfaces of arbitrary topology —, we reduce the prob-
lem of surface smoothing, or fairing, to low-pass filtering. We
describe a very simple surface signal low-pass filter algorithm that
appliesto surfacesof arbitrary topology. Asopposed to other exist-
ing optimization-based fairing methods, which are computationally
more expensive, this is a linear time and space complexity algo-
rithm. With this algorithm, fairing very large surfaces, such as
those obtained from volumetric medical data, becomes affordable.
By combining this algorithm with surface subdivision methods we
obtain a very effective fair surface design technique. We then
extend the analysis, and modify the algorithm accordingly, to ac-
commodate different types of constraints. Some constraints can
beimposed without any modification of the algorithm, while others
reguirethe solution of asmall associated linear system of equations.
In particular, vertex location constraints, vertex normal constraints,
and surface normal discontinuities across curves embedded in the
surface, can be imposed with this technique.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picturelimage generation - display algorithms; 1.3.5
[Computer Graphics]: Computational Geometry and Object Mod-
eling - curve, surface, solid, and object representations; J.6 [Com-
puter Applications]: Computer-Aided Engineering - computer-
aided design

General Terms: Algorithms, Graphics.

1 INTRODUCTION

The signal processing approach described in this paper was origi-
nally motivated by the problem of how to fair large polyhedral sur-
faces of arbitrary topology, such asthose extracted from volumetric
medical data by iso-surface construction algorithms [21, 2, 11, 15],
or constructed by integration of multiple range images [36].

Since most existing algorithms based on fairness norm opti-
mization [37, 24, 12, 38] are prohibitively expensivefor very large
surfaces — a million vertices is not unusual in medical images —,
we decided to look for new algorithms with linear time and space
complexity [31]. Unless these large surfaces are first simplified
[29, 13, 11], or re-meshed using far fewer faces [35], methods
based on patch technology, whether parametric [28, 22, 10, 20, 19]
or implicit [1, 23], are not acceptable either. Although curvature
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continuous, a patch-based surface interpolant is far more complex
than theoriginal surface, moreexpensiveto render, and worst of al,
does not removethe high curvature variation present in the original
mesh.

Asinthefairnessnorm optimization methodsand physics-based
deformable models [16, 34, 30, 26], our approach is to move the
verticesof the polyhedral surfacewithout changing the connectivity
of the faces. The faired surface has exactly the same number of
verticesand faces asthe original one. However, our signal process-
ing formulation results in much less expensive computations. In
these variational formulations [5, 24, 38, 12], after finite element
discretization, the problemis often reduced to the solution of alarge
sparselinear system, or amore expensiveglobal optimization prob-
lem. Large sparselinear systemsare solved using iterative methods
[9], and usually result in quadratic time complexity algorithms. In
our case, the problem of surfacefairing is reduced to sparse matrix
multiplication instead, alinear time complexity operation.

The paper isorganized asfollows. In section 2 we describe how
to extend signal processingto signal sdefined on polyhedral surfaces
of arbitrary topology, reducing the problem of surface smoothingto
low-passfiltering, and we describe aparticularly simplelinear time
and spacecomplexity surface signal low-passfilter algorithm. Then
we concentrate on the applications of this algorithm to interactive
free-form fair surface design. AsWelch and Witkin [38], in section
3 we design more detailed fair surfaces by combining our fairing
algorithm with subdivision techniques. In section 4 we modify our
fairing algorithm to accommodate different kinds of constraints.
Finally, in section 5 we present some closing remarks.

2 THE SIGNAL PROCESSING APPROACH

Fourier analysis is a natural tool to solve the problem of signal
smoothing. The space of signals — functions defined on certain
domain —is decomposedinto orthogonal subspacesassociated with
different frequencies, with the low frequency content of a signal
regarded as subjacent data, and the high frequency content as noise.

21 CLOSED CURVE FAIRING

To smooth a closed curve it is sufficient to remove the noise from
the coordinatesignals, i.e., to project the coordinate signalsonto the
subspace of low frequencies. This is what the method of Fourier
descriptors, which dates back to the early 60’s, does [40]. Our ap-
proach to extend Fourier analysisto signals defined on polyhedral
surfaces of arbitrary topology is based on the observation that the
classical Fourier transform of asignal can be seen as the decompo-
sition of the signal into a linear combination of the eigenvectors of
the Laplacian operator. To extend Fourier analysisto surfaces of
arbitrary topology we only haveto define anew operator that takes
the place of the Laplacian.

Asamotivation, let usconsider the simple case of adiscretetime
n-periodic signal —afunction defined on aregular polygon of » ver-
tices —, which we represent asa column vector z = (z1, ..., zn)".
The components of this vector are the values of the signal at the
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Figure 1: The two weighted averaging steps of our fairing algo-
rithm. (A) A first step with positive scale factor X is applied to all
the vertices. (B) Then a second step with negative scale factor 4 is
applied to all the vertices.

vertices of the polygon. The discrete Laplacian of z is defined as

1 1
Az; = 5(%’—1 —zi)+ §(z~;+1 — ;) , (€]

where the indices are incremented and decremented modulo ». In
matrix form it can be written as follows

Az =—-Kz, 2

where K is the circulant matrix

2 -1 -1
-1 2 -1
K== .. ..
-1 2 -1
-1 -1 2

Since K is symmetric, it has real eigenvalues and eigenvectors.
Explicitly, the real eigenvalues ki, ..., k, of K, sorted in non-
decreasing order, are

k; =1—cos(2x|j/2|/n),

and the corresponding unit length real eigenvectors, w1, . .., %n,

are

1/n ifj=1
\/2/n sin(27h|j/2]/n) if jiseven
\/2/n cos(2xh|j/2]/n) if jisodd.

Notethat 0 < k1 < --- < k, < 2, and as the frequency k;
increases, the corresponding eigenvector «;, asan-periodic signal,
changes more rapidly from vertex to vertex.

To decompose the signal = as a linear combination of the real
eigenvectorsuy, . .., un

(w)n =

mZZ&w, (©)

is computationally equivalent to the evaluation of the Discrete
Fourier Transform of z. To smooth the signal = with the method
of Fourier descriptors, this decomposition has to be computed, and
then the high frequency terms of the sum must be discarded. But
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Figure2: (A) Graph of transfer function f(k) = (1 — pk)(1 — Ak)
of non-shrinking smoothing algorithm.

this is computationally expensive. Even using the Fast Fourier
Transform algorithm, the computational complexity is in the order
of nlog(n) operations.

An aternative is to do the projection onto the space of low
frequencies only approximately. This is what a low-pass filter
does. We will only consider here low-passfilters implemented asa
convolution. A more detailed analysisof other filter methodologies
is beyond the scope of this paper, and will be done elsewhere [33].
Perhapsthe most popular convolution-based smoothing method for
parameterized curves is the so-called Gaussian filtering method,
associated with scale-spacetheory [39, 17]. In its simplest form, it
can be described by the following formula

T, =z + \Az; , 4)

where 0 < A < 1 isascae factor (for A < 0 and A > 1 the
algorithm enhances high frequenciesinstead of attenuating them).
This can be written in matrix form as

g = -2K)e. (5)

It iswell known though, that Gaussianfiltering producesshrink-
age, and this is so because the Gaussian kernel is not a low-pass
filter kernel [25]. To define a low-pass filter, the matrix I — AK
must be replaced by some other function f(K') of the matrix K.
Our non-shrinking fairing algorithm, described in the next section,
is one particularly efficient choice.

We now extend thisformulation to functionsdefined on surfaces
of arbitrary topology.

2.2 SURFACE SIGNAL FAIRING

At this point we need a few definitions. We represent a polyhedral
surface as a pair of lists § = {V, F'}, alist of n verticesV, and a
list of polygonal faces F'. Although in our current implementation,
only triangulated surfaces, and surfaceswith quadrilateral facesare
allowed, the algorithm is defined for any polyhedral surface.

Both for curves and for surfaces, a neighborhood of a vertex
v; is a set ¢* of indices of vertices. If the index ;5 belongs to
the neighborhood :*, we say that v; is a neighbor of v;. The
neighborhood structure of a polygonal curve or polyhedral surface
is the family of all its neighborhoods {z* : ¢ = 1,2,...,n}. A
neighborhood structure is symmetric if every time that a vertex v;
is a neighbor of vertex v;, also v; is a neighbor of v;. With non-
symmetric neighborhoods certain constraints can be imposed. We
discussthisissuein detail in section 4.

A particularly important neighborhood structureisthefir st order
neighborhood structure, where for each pair of vertices v; and v;
that shareaface (edgefor acurve), wemakew; aneighbor of v;, and
v; aneighbor of v;. For example, for apolygonal curve represented
as a list of consecutive vertices, the first order neighborhood of a
vertex v; is+* = {i — 1,7 + 1}. The first order neighborhood



Figure 3: (A) Sphere partialy corrupted by normal noise. (B)
Sphere (A) after 10 non-shrinking smoothing steps. (C) Sphere (A)
after 50 non-shrinking smoothing steps. (D) Sphere (A) after 200
non-shrinking smoothing steps. Surfacesare flat-shaded to enhance
the faceting effect.

structure is symmetric, and since it is implicitly given by the list
of faces of the surface, no extra storage is required to represent
it. This is the default neighborhood structure used in our current
implementation.

A discrete surface signal isafunction z = (z1,...,2,)" de
fined on the vertices of a polyhedral surface. We definethe discrete
Laplacian of a discrete surface signal by weighted averages over
the neighborhoods

Az; = Z wij (2 — =), (6)

JE>*

where the weights w;; are positive numbers that add up to one,

e Wi = 1, for each . The weights can be chosen in many
different ways taking into consideration the neighborhood struc-
tures. One particularly simple choice that produces good results is
to set w;; equal to the inverse of the number of neighbors 1/|:*|
of vertex v;, for each element 5 of +*. Note that the case of the
Laplacian of a n-periodic signal (1) is a particular case of these
definitions. A more general way of choosing weights for a sur-
face with a first order neighborhood structure, is using a positive
function ¢(v;, v;) = ¢(v;, v;) defined on the edges of the surface

_ )
Ehei* ¢(vi, vn)

For example, the function can be the surface area of the two faces
that share the edge, or some power of the length of the edge
#(vi,v5) = ||lvi — v;]|*. In our implementation the user can
choose any one of these weighting schemes. They produce similar
results when the surface has faces of roughly uniform size. When
using a power of the length of the edges as weighting function, the
exponent o« = —1 producesgood results.

If W = (ws;) is the matrix of weights, with w;; = 0 when
j is not a neighbor of ¢, the matrix K can now be defined as

C D

Figure 4: (A) Boundary surface of voxels from a CT scan. (B)
Surface (A) after 10 non-shrinking smoothing steps. (C) Surface
(A) after 50 non-shrinking smoothing steps. (D) Surface (A) after
100 non-shrinking smoothing steps. ks = 0.1 and A = 0.6307 in
(B), (C), and (D). Surfaces are flat-shaded to enhance the faceting
effect.

K = I —W. In the appendix we show that for a first order
neighborhood structure, and for all the choicesof weightsdescribed
above, the matrix K hasreal eigenvalues0 < k; < ky < --- <
k. < 2 with corresponding linearly independent real unit length
right eigenvectors «,, ..., u,. Seen as discrete surface signals,
these eigenvectors should be considered as the natural vibration
modes of the surface, and the corresponding eigenvalues as the
associated natural frequencies.

The decomposition of equation (3), of thesignal z into alinear
combination of the eigenvectorsu, . . . , u,, isstill valid with these
definitions, but there is no extension of the Fast Fourier Transform
algorithm to compute it. The method of Fourier descriptors — the
exact projection onto the subspace of low frequencies — is just
not longer feasible, particularly for very large surfaces. On the
other hand, low-passfiltering — the approximate projection —can be
formulated in exactly the sameway asfor n-periodic signals, asthe
multiplication of a function f(K') of the matrix K by the original
signal

' = f(K)e,
and this process can be iterated N times

N :f(K)N:v.

Thefunction of one variable f(%) isthetransfer function of the
filter. Although many functions of onevariable can be evaluatedin
matrices[9], wewill only consider polynomials here. For example,
in the case of Gaussian smoothing the transfer function is f(k) =
1 — Xk. Sincefor any polynomial transfer function we have

' = f(K)e :ZSif(ki)Ui,

=1

because Ku; = k;ui, to define a low-pass filter we need to find
a polynomial such that f(k:;)™ = 1 for low frequencies, and



F(k)N = 0for highfrequenciesintheregion of interest % € [0, 2].

Our choiceis
f(k) = (1= Xk)(1 — pk) @)

where0 < A, and p isanew negative scalefactor suchthat i < —A.
That is, after we perform the Gaussian smoothing step of equation
(4) with positive scale factor A for all the vertices — the shrinking
step —, we then perform another similar step

zi =z; + pAz; 8)

for al the vertices, but with negative scale factor p instead of A —
the un-shrinking step —. These steps are illustrated in figure 1.

The graph of the transfer function of equation (7) isillustrated
infigure 2-A. Figure 2-B showsthe resulting transfer function after
N iterations of the algorithm, the graph of the function f(k)".
Since f(0) = 1 and g + A < 0, thereis a positive value of &, the
pass-band frequency kes, suchthat f(kes) = 1. Thevalue of keg is

1 1
12

The graph of the transfer function f(k)" displays a typical low-
passfilter shapein the region of interest & € [0, 2]. The pass-band
region extendsfrom k = 0 to k = kee, where f(k)" ~ 1. Ask
increasesfrom k = kps t0 k = 2, the transfer function decreasesto
zero. The faster the transfer function decreasesin this region, the
better. Therate of decreaseis controlled by the number of iterations
N.

Thisalgorithmisfast (linear both in time and space), extremely
simple to implement, and produces smoothing without shrinkage.
Faster algorithms can be achieved by choosing other polynomial
transfer functions, but the analysis of the filter design problem is
beyond the scope of this paper, and will be treated elsewhere[33].
However, as arule of thumb, the filter based on the second degree
polynomial transfer function of equation (7) canbedesigned by first
choosing a values of kps. Values from 0.01 to 0.1 produce good
results, and all the examples shown in the paper where computed
with kps =~ 0.1. Once kps hasbeen chosen, we haveto choose A and
N (p comesout of equation (9) afterwards). Of course we want to
minimize N, the number of iterations. To do so, A must be chosen
as large as possible, while keeping | f(k)| < 1 for keg < k < 2
(if |£(k)| > 1 in [kes, 2], the filter will enhance high frequencies
instead of attenuating them). In some of the examples, we have
chosen A so that f(1) = —f(2). For kes < 1 this choice of A
ensures a stable and fast filter.

Figures 3 and 4 show examplesof large surfacesfaired with this
algorithm. Figures 3 is a synthetic example, where noise has been
added to one half of a polyhedral approximation of a sphere. Note
that while the algorithm progresses the half without noise does not
change significantly. Figure 4 was constructed from a CT scan of
a spine. The boundary surface of the set of voxels with intensity
value above a certain threshold is used as the input signal. Note
that there is not much difference between the results after 50 and
100 iterations.

3 SUBDIVISION

A subdivision surface is a smooth surface defined as the limit of
a sequence of polyhedral surfaces, where the next surface in the
seguence is constructed from the previous one by a refinement
process. In practice, sincethe number of facesgrowsvery fast, only
afew levelsof subdivision are computed. Oncethefacesare smaller
than the resolution of the display, it is not necessary to continue. As
Welch and Witkin [38], we are not interested in the limit surfaces,
but rather in using subdivision and smoothing stepsastoolsto design
fair polyhedral surfacesin aninteractive environment. Theclassical

Figure 5. Surfaces created alternating subdivision and different
smoothing steps. (A) Skeleton surface. (B) One Gaussian smooth-
ing step (A = 0.5). Notethe hexagonal symmetry becauseof insuf-
ficient smoothing. (C) Five Gaussian smoothing steps (A = 0.5).
Note the shrinkage effect. (D) Five non-shrinking smoothing steps
(ks = 0.1 and A = 0.6307) of this paper. (B),(C), and (D) are
the surfaces obtained after two levels of refinement and smoothing.
Surfaces are flat-shaded to enhancethe faceting effect.

subdivision schemes[8, 4, 12] arerigid, in the sensethat they have
no free parameters that influence the behavior of the algorithm as
it progresses trough the subdivision process. By using our fairing
algorithm in conjunction with subdivision steps, we achieve more
flexibility in the design process. In this way our fairing algorithm
can be seen as a complement of the existing subdivision strategies.

In the subdivision surfaces of Catmull and Clark [4, 12] and
Loop [18, 6], the subdivision process involves two steps. A re-
finement step, where a new surface with more vertices and facesis
created, and a smoothing step, where the vertices of the new sur-



face are moved. The Catmull and Clark refinement process creates
polyhedral surfaces with quadrilateral faces, and Loop refinement
process subdivides each triangular face into four similar triangular
faces. In both cases the smoothing step can be described by equa-
tion (4). The weights are chosen to ensure tangent or curvature
continuity of the limit surface.

These subdivision surfaces have the problem of shrinkage,
though. The limit surface is significantly smaller overall than the
initial skeleton mesh —thefirst surface of the sequence—. Thisisso
because the smoothing step is essentially Gaussian smoothing, and
as we have pointed out, Gaussian smoothing produces shrinkage.
Because of the refinement steps, the surfaces do not collapse to the
centroid of theinitial skeleton, but the shrinkage effect can be quite
significant.

The problem of shrinkage can be solved by a global operation.
If the amount of shrinkage can be predicted in closed form, the
skeleton surface can be expanded before the subdivision processis
applied. Thisis what Halstead, Kass, and DeRose [12] do. They
show how to modify the skeleton mesh so that the subdivision sur-
face associated with the modified skeleton interpolates the vertices
of the original skeleton.

The subdivision surfaces of Halstead, Kass, and DeRose in-
terpolate the vertices of the original skeleton, and are curvature
continuous. However, they show a significant high curvature con-
tent, even when the original skeleton mesh does not have such
undulations. The shrinkage problem is solved, but a new problem
isintroduced. Their solution to this second problem is to stop the
subdivision process after a certain number of steps, and fair the
resulting polyhedral surface based on avariational approach. Their
fairness norm minimization procedure reduces to the solution of a
large sparselinear system, and they report quadratic running times.
The result of this modified algorithm is no longer a curvature con-
tinuous surface that interpolates the vertices of the skeleton, but a
more detailed fair polyhedral surface that usually does not interpo-
late the vertices of the skeleton unless the interpolatory constraints
are imposed during the fairing process.

We argue that the source of the unwanted undulations in the
Catmull-Clark surface generated from the modified skeleton is the
smoothing step of the subdivision process. Only one Gaussian
smoothing step does not produce enough smoothing, i.e., it does
not produce sufficient attenuation of the high frequency compo-
nents of the surfaces, and these high frequency components persist
during the subdivision process. Figure 5-B shows an example of
a subdivision surface created with the triangular refinement step
of Loop, and one Gaussian smoothing step of equation (4). The
hexagonal symmetry of the skeleton remainsduring the subdivision
process. Figure5-C showsthe sameexample, but wherefive Gauss-
ian smoothing steps are performed after each refinement step. The
hexagonal symmetry hasbeenremoved at the expenseof significant
shrinkage effect. Figure 5-D shows the same example where the
fivenon-shrinking fairing stepsare performed after each refinement
step. Neither hexagonal symmetry nor shrinkage can be observed.

4 CONSTRAINTS

Although surfaces created by a sequence of subdivision and smooth-
ing steps based on our fairing algorithm do not shrink much, they
usually do not interpolate the vertices of the original skeleton. In
this section we show that by modifying the neighborhood structure
certain kind of constraints can beimposed without any modification
of the algorithm. Thenwe study other constraintsthat require minor
modifications.

41 |INTERPOLATORY CONSTRAINTS

Figure 6: Example of surfaces designed using subdivision and
smoothing steps with one interpolatory constraint. (A) Skeleton.
(B) Surface (A) after two levelsof subdivision and smoothing with-
out constraints. (C) Sameas (B) but with non-smooth interpolatory
constraint. (D) Same as (B) but with smooth interpolatory con-
straint. Surfaces are flat-shaded to enhancethe faceting effect.

Aswementioned in section 2.2, asimpleway tointroduceinterpola-
tory constraintsin our fairing algorithm is by using non-symmetric
neighborhood structures. If no other vertex isaneighbor of acertain
vertex vy, i.e., if the neighborhood of v, isempty, then thevalue z,

of any discrete surface signal =z does not change during the fairing
process, because the discrete Laplacian Az, is egqual to zero by
definition of empty sum. Other vertices are allowed to have v, as
a neighbor, though. Figure 6-A shows a skeleton surface. Figure
6-B shows the surface generated after two levels of refinement and
smoothing using our fairing algorithm without constraints, i.e., with
symmetric first-order neighborhoods. Although the surface has not
shrunk overall, the nose has been flattened quite significantly. This
is so becausethe noseis made of very few facesin the skeleton, and
these faces meet at very sharp angles. Figure 6-C shows the result
of applying the same steps, but defining the neighborhood of the
vertex at the tip of the noseto be empty. The other neighborhoods
are not modified. Now the vertex satisfies the constraint — it has
not moved at all during the fairing process —, but the surface has
lost its smoothness at the vertex. This might be the desired effect,
but if it is not, instead of the neighborhoods, we have to modify the
algorithm.

42 SMOOTH INTERPOLATION

We look at the desired constrained smooth signal =5 as a sum of
the corresponding unconstrained smooth signal ¥ = F z after N
steps of our fairing algorithm (i.e. F = f(K)Y), plus a smooth
deformation d,

:v]cv:zN—l—(zl —z{v)dl.

The deformation d; isitself another discrete surface signal, and the
constraint (z3 )1 = z; issatisfiedif (d1 ), = 1. To construct such
a smooth deformation we consider the signal 6, where

1 j=4
0 j#i

Thisis not a smooth signal, but we can apply the fairing algorithm
to it. Theresult, let usdenoteit £y, the first column of the matrix
F, isasmooth signal, but its value at the vertex v, is not equal to
one. However, sincethe matrix F' isdiagonally dominated, 7, the
first element of its first column, must be non-zero. Therefore, we
can scalethe signal F,; to makeit satisfy the constraint, obtaining
the desired smooth deformation

(6:); =

dy = Fo FTb.



Figure 7: Examples of using subdivision and smoothing with
smooth interpolatory constraints as a design tool. All the sur-
faces have been obtained by applyingtwo levels of subdivisionand
smoothing with various parametersto the skeleton surface of figure
5-A . Constrained vertices are marked with red dots. Surfaces are
flat-shaded to enhancethe faceting effect.

Figure 6-D showsthe result of applying this process.

When more than one interpolatory constraint must be imposed,
the problem is slightly more complicated. For simplicity, we
will assume that the vertices have been reordered so that the in-
terRoIatory constraints are imposed on the first m vertices, i.e.,
(200 = 21,.., (2N )m = zm. Wenow look at the non-smooth
signalséy, . . ., 6, and at the corresponding faired signals, thefirst
m columns of the matrix F'. These signals are smooth, and so, any
linear combination of them is also a smooth signal. Furthermore,
since F' isnon-singular and diagonally dominated, thesesignalsare
linearly independent, and there exists alinear combination of them
that satisfies the m desired constraints. Explicitly, the constrained
smooth signal can be computed as follows

1 —:l:{v
N N -1 .
Tom —z%

where F.., denotes the sub-matrix of F determined by the first »
rows and the first s columns. Figure 7 shows examples of surfaces
constructed using subdivision and smoothing stepsand interpolating
some vertices of the skeleton using this method. The parameter of
thefairing algorithm have been modified to achievedifferent effects,
including shrinkage.

To minimize storage requirements, particularly whenn islarge,
and assuming that m is much smaller than », the computation
can be structured as follows. The fairing algorithm is applied to
81 obtaining the first column F'§; of the matrix F. The first m
elements of this vector are stored as the first column of the matrix
Fpm. Theremaining m — n elements of F§; are discarded. The
same process is repeated for 62, . . ., 8, obtaining the remaining

columnsof F,..,. Thenthe following linear system

N
Y1 1 — 23
me : =
N
y‘m. Tm — Tm

issolved. Thematrix F,... isnolonger needed. Thentheremaining
components of the signal y are set to zero ym4+1 = -+ = y» = 0.
Now the fairing algorithm is applied to the signal y. The result
is the smooth deformation that makes the unconstrained smooth
signal =¥ satisfy the constraints

:v]cv:zN—l—Fy.

43 SMOOTH DEFORMATIONS

Note that in the constrained fairing algorithm described above the
fact that the values of the signal at the vertices of interest are
constrained to remain constant can betrivially generalized to allow
for arbitrary smooth deformations of asurface. To do so, the values
z1,...,Tm iNequation (10) must be replaced by the desired final
valuesof thefaired signal at the corresponding vertices. Asininthe
Free-form deformation approaches of Hsu, Hughes, and Kaufman
[14] and Borrel [3], instead of moving control points outside the
surface, surfaces can be deformed here by pulling one or more
vertices.

Also note that the scope of the deformation can be controlled by
changing the number of smoothing steps applied while smoothing
the signals éi,...,6,. To make the resulting signal satisfy the
constraint, the value of N in the definition of the matrix # must
be the one used to smooth the deformations. We have observed
that good results are obtained when the number of iterations used to
smooth the deformationsis about five times the number used to fair
the original shape. The examplesin figure 7 have been generated
in this way.

44 HIERARCHICAL CONSTRAINTS

This is another application of non-symmetric neighborhoods. We
start by assigning a numeric label I; to each vertex of the surface.
Then we define the neighborhood structure as follows. We make
vertex v; a neighbor of vertex v; if »; and v; share an edge (or
face), and if i; < I;. Note that if v; is a neighbor of »; and
l; < l;,thenv; isnot aneighbor of v;. The symmetry applies only
to vertices with the same label. For example, if we assign label
I; = 1 to al the boundary vertices of a surface with boundary, and
label I; = 0 to all the internal vertices, then the boundary is faired
as a curve, independently of the interior vertices, but the interior
verticesfollow the boundary vertices. If wealsoassignlabel I; = 1
to a closed curve composed of internal edges of the surface, then
the resulting surface will be smooth along, and on both sides of
the curve, but not necessarily acrossthe curve. Figure 8-D shows
examples of subdivision surface desighed using this procedure. If
wealsoassignlabel I; = 2 to someisolated pointsalong the curves,
then those vertices will in fact not move, because they will have
empty neighborhoods.

45 TANGENT PLANE CONSTRAINTS

Although the normal vector to a polyhedral surface is not defined
at a vertex, it is customary to define it by averaging some local
information, say for shading purposes. When the signal = in equa-
tion (6) is replaced by the coordinatesof the vertices, the Laplacian
becomes a vector

Av; = Z wij (v; — vs) .

JE>*
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Figure 8: (A) Skeleton with marked vertices. (B) Surface (A) after
three levels of subdivision and smoothing without constraints. (C)
Same as (B) but with empty neighborhoodsof marked vertices. (D)
Same as (B) but with hierarchical neighborhoods, where marked
vertices have label 1 and unmarked vertices have label 0. Surfaces
are flat-shaded to enhance the faceting effect.

This vector average can be seen as a discrete approximation of the
following curvilinear integral

L o= e di(w),
Y Joey

where v is a closed curve embedded in the surface which encircles
the vertex v;, and |y| is thelength of the curve. It isknownthat, for
a curvature continuous surface, if the curve v is let to shrink to to
the point v;, the integral convergesto the mean curvature (v;) of
the surface at the point »; times the normal vector N; at the same

point [7]

lim
€—0 |'Ye|

(v — ;) dl(v) = &(vi)N; .

vEYe

Because of this fact, we can define the vector Av; as the normal
vector to the polyhedral surface at v;. If N; isthe desired normal
direction at vertex v; after the fairing process, and S; and T; are
two linearly independent vectors tangent to N;, The surface after
N iterations of the fairing algorithm will satisfy the desired normal
constraint at the vertex v; it the following two linear constraints

SIAWY =TIAWN =0

are satisfied. This leads us to the problem of fairing with general
linear constraints.

4.6 GENERAL LINEAR CONSTRAINTS

We consider herethe problem of fairing a discrete surface signal «
under general linear constraintsCzY = ¢, whereC' isam x n ma-
trix of rank m (m independent constraints), and ¢ = (c1, ..., em)*

is avector. The method described in section 4.1 to impose smooth
interpolatory constraints, is aparticular case of this problem, where
the matrix C' is equal the upper m rows of the m x m identity
matrix. Our approachisto reducethe general caseto this particular
case.

We start by decomposing the matrix C' into two blocks. A first
m x m block denoted C/;y, composed of m columns of C', and a
second block denoted C/ 2y, composed of the remaining columns.
The columns that constitute C(;y must be chosen so that C;) be-
come non-singular, and as well conditioned as possible. In practice
this can be done using Gauss elimination with full pivoting [9], but
for the sake of simplicity, we will assume here that C(1y is com-
posed of the first m columns of C'. We decompose signals in the
sameway. z(1) denotes here the first m components, and z(,) the
last n — m components, of the signal z. We now define a change
of basisin the vector space of discrete surface signals as follows

z1) = )~ O 0 ¥
T2) = Ye)

If weapply thischange of basisto the constraint equation C{ 1 yz 1)+
Cl2)z(2) = ¢, weobtain C1)y(1) = ¢, or equivalently

v = Caye,

which isthe problem solved in section 4.2.

5 CONCLUSIONS

We have presented a new approach to polyhedral surface fairing
based on signal processing ideas, we have demonstrated how to
use it as an interactive surface design tool. In our view, this new
approach represents a significant improvement over the existing
fairness-norm optimization approaches, because of the linear time
and space complexity of the resulting fairing algorithm.

Our current implementation of theseideasis a surface modeler
that runs at interactive speedson a|BM RS/6000 classworkstation
under X-Windows. In this surface modeler we have integrated
all the techniques described in this paper and many other popular
polyhedral surface manipulation techniques. Among other things,
the user can interactively define neighborhood structures, select
vertices or edgesto impose constraints, subdivide the surfaces, and
apply the fairing algorithm with different parameter values. All the
illustrations of this paper where generated with this software.

Intermsof futurework, weplantoinvestigate how thisapproach
can be extended to provide alternatives solutions for other impor-
tant graphics and modeling problems that are usually formulated
as variational problems, such as surface reconstruction or surface
fitting problems solved with physics-based deformable models.

Some related papers [31, 32] can be retrieved from the IBM
web server (htt p: // waw. wat son. i bm com 8080).
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APPENDI X

We first analyze those cases where the matrix W can be factorized as a
product of a symmetric matrix £ times a diagonal matrix D. Such is the
case for the first order neighborhood of a shape with equal weightsw;; =
1/]2*| in each neighborhood:*. In this case E is the matrix whose z5-th.
element is equal to 1 if verticesv; and »; are neighbors, and O otherwise,
and D is the diagonal matrix whose :-th. diagonal element is 1/|*|.
Since in this case W is a normal matrix [9], because D1/2WD~1/2 =
D'/2ED!/2 is symmetric, W has all real eigenvalues, and sets of n
left and right eigenvectors that form respective bases of n-dimensional
space. Furthermore, by construction, W is also a stochastic matrix, a
matrix with nonnegative elements and rows that add up to one [27]. The
eigenvalues of a stochastic matrix are bounded above in magnitude by 1,
which is the largest magnitude eigenvalue. It follows that the eigenvalues
of the matrix K are real, bounded below by 0, and above by 2. Let
0< ky <ks <--- < kn < 2betheeigenvaluesof thematrix K, and let
u,uz2, ..., uy asetof linearly independent unit length right eigenvectors
associated with them.

When the neighborhood structureis not symmetric, the eigenvaluesand
eigenvectorsof W might not be real, but as long as the eigenvaluesare not
repeated, the decomposition of equation (3), and the analysis that follows,
are still valid. However, the behavior of our fairing algorithm in this case
will depend on the distribution of eigenvaluesin the complex plane. The
matrix W is still stochastic here, and so all the eigenvalues lie on a unit
circle|k; —1| < 1. If all theeigenvaluesof W arevery closeto thereal line,
the behavior of the fairing algorithm should be essentially the sameasin the
symmetric case. This seems to be the case when very few neighborhoods
are made non-symmetric. But in general, the problem has to be analyzed
on acaseby casebasis.





