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Abstract

Complex networks have been studied extensively due to their relevance to many real systems

as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social

networks [1, 2, 3, 4, 5]. A large number of real networks are called “scale-free” because they show a

power-law distribution of the number of links per node [1, 6, 7]. However, it is widely believed that

complex networks are not length-scale invariant or self-similar. This conclusion originates from

the “small-world” property of these networks, which implies that the number of nodes increases

exponentially with the “diameter” of the network [8, 9, 10, 11], rather than the power-law relation

expected for a self-similar structure. Nevertheless, here we present a novel approach to the analysis

of such networks, revealing that their structure is indeed self-similar. This result is achieved by the

application of a renormalization procedure which coarse-grains the system into boxes containing

nodes within a given ”size”. Concurrently, we identify a power-law relation between the number

of boxes needed to cover the network and the size of the box defining a finite self-similar exponent.

These fundamental properties, which are shown for the WWW, social, cellular and protein-protein

interaction networks, help to understand the emergence of the scale-free property in complex

networks. They suggest a common self-organization dynamics of diverse networks at different

scales into a critical state and in turn bring together previously unrelated fields: the statistical

physics of complex networks with renormalization group, fractals and critical phenomena.
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Two fundamental properties of real complex networks have attracted much attention

recently: the small-world and the scale-free properties. Many naturally occurring networks

are small world since one can reach a given node from another one, following the path

with the smallest number of links between the nodes, in a very small number of steps.

This corresponds to the so-called “six degrees of separation” in social networks [10]. It

is mathematically expressed by the slow (logarithmic) increase of the average diameter

of the network, ℓ̄, with the total number of nodes N , ℓ̄ ∼ ln N , where ℓ is the shortest

distance between two nodes and defines the distance metric in complex networks [6, 8, 9, 11].

Equivalently, we obtain:

N ∼ eℓ̄/ℓ0 , (1)

where ℓ0 is a characteristic length.

A second fundamental property in the study of complex networks arises with the discovery

that the probability distribution of the number of links per node, P (k) (also known as the

degree distribution), can be represented by a power-law (scale-free) with a degree exponent

γ usually in the range 2 < γ < 3 [6],

P (k) ∼ k−γ. (2)

These discoveries have been confirmed in many empirical studies of diverse networks

[1, 2, 3, 4, 6, 7].

With the aim of providing a deeper understanding of the underlying mechanism which

leads to these common features one needs to probe the patterns within the network structure

in more detail. The question of connectivity between groups of interconnected nodes on

different length-scales has received less attention. Yet, a plethora of examples in Nature

exhibits the importance of collective behavior, from interactions between communities within

social networks, links between clusters of web-sites of similar subjects, all the way to the

highly modular manner in which molecules interact to keep a cell alive. Here we show that

real complex networks, such as WWW, social, protein-protein interaction networks (PIN)

and cellular networks are indeed constructed of self-repeating patterns on all length-scales,

and are therefore invariant or self-similar under a length-scale transformation.

This result comes as a surprise since the exponential increase in Eq. (1) has led to

the general understanding that complex networks are not self-similar, since self-similarity

requires a power-law relation between N and ℓ.
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How can one reconcile the exponential increase in Eq. (1) with self-similarity, or in

other words an underlying length-scale-invariant topology? At the root of the self-similar

properties that we unravel in this study is a scale-invariant renormalization procedure which

we show to be valid for dissimilar complex networks.

In order to demonstrate this concept we first consider a self-similar network embedded

in Euclidean space, of which a classical example would be a fractal percolation cluster at

criticality [12]. In order to unfold the self-similar properties of such clusters we calculate the

fractal dimension using a “box counting” method and a “cluster growing” method [13].

In the first method we cover the percolation cluster with NB boxes of linear size ℓB. The

fractal dimension or box dimension dB is then given by [14]:

NB ∼ ℓ−dB

B , (3)

In the second method, the network is not covered with boxes, instead one seed node is

chosen at random and a cluster of nodes centered at the seed and separated by a minimum

distance ℓ is calculated. The procedure is then repeated by choosing many seed nodes at

random and the average “mass” of the resulting clusters (〈Mc〉, defined as the number of

nodes in the cluster) is calculated as a function of ℓ to obtain the following scaling:

〈Mc〉 ∼ ℓdf , (4)

defining the fractal cluster dimension df [14]. Comparing Eq. (4) and (1) implies that

df = ∞ for complex small-world networks.

For a homogeneous network characterized by a narrow degree distribution (such as a

fractal percolation cluster) the box covering method of Eq. (3) and the cluster growing

method of Eq. (4) are equivalent since every node typically has the same number of links

or neighbors. Equation (4) can then be derived from (3) and dB = df , and this relation has

been regularly used.

The crux of the matter is to understand how one can calculate a self-similar exponent

(analogous to the fractal dimension in Euclidean space) in complex inhomogeneous networks

with a broad degree distribution such as Eq. (2). Under these conditions Eqs. (3) and (4)

are not equivalent as will be shown below. The application of the proper covering procedure

in the box counting method, Eq. (3), for complex networks unveils a set of self-similar
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properties such as a finite self-similar exponent and a new set of critical exponents for the

scale-invariant topology.

Figure 1a illustrates the box covering method using a schematic network composed of 8

nodes. For each value of the box size ℓB, we search for the number of boxes needed to tile

the entire network such that each box contains nodes separated by a distance ℓ < ℓB.

This procedure is applied to several different real networks: (i) a part of the WWW

composed of 325,729 web-pages which are connected if there is a URL link from one page

to another [6] (http://www.nd.edu/∼networks), (ii) a social network where the nodes are

392,340 actors linked if they were cast together in at least one movie [15], (iii) the biological

networks of protein-protein interactions found in E. coli (429 proteins) and H. sapiens (hu-

man) (946 proteins) linked if there is a physical binding between them (database available

via the Database of Interacting Proteins [16, 17], other PINs are discussed in the Supplemen-

tary Materials), and (iv) the cellular networks compiled by [18] using a graph-theoretical

representation of the whole biochemical pathways based on the WIT integrated-pathway

genome database [19] (http://igweb.integratedgenomics.com/IGwit) of 43 species from Ar-

chaea, Bacteria, and Eukarya. Here we show the results for A. fulgidus, E. coli and C.

elegans [18], while the full database is analyzed in the Supplementary Materials. It has been

previously determined that the WWW and actors networks are small-world and scale-free,

characterized by Eq. (2) with γ = 2.6 and 2.2, respectively [1]. For the PINs of E. coli and

H. sapiens we find γ = 2.2 and 2.1, respectively. All cellular networks are scale-free with

average exponent γ = 2.2 [18]. We confirm these values and show the results for the WWW

in Fig. 2.

Figures 2a and 2b show the results of NB(ℓB) according to Eq. (3). They reveal the

existence of self-similarity in the WWW, actors, and E. coli and H. sapiens protein-protein

interaction networks with self-similar exponents dB = 4.1, dB = 6.3 and dB = 2.3 and

dB = 2.3, respectively. The cellular networks are shown in Fig. 2c and have dB = 3.5.

We now elaborate on the apparent contradiction between the two definitions of self-

similar exponents in complex networks. After performing a renormalization at a given ℓB,

we calculate the mean mass of the boxes covering the network, 〈MB(ℓB)〉, to obtain

〈MB(ℓB)〉 ≡ N/NB(ℓB) ∼ ℓdB

B , (5)

which is corroborated by direct measurements for all the networks and shown in Fig. 3a for
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the WWW.

On the other hand, the average performed in the cluster growing method (for this calcu-

lation we average over single boxes without tiling the system) gives rise to an exponential

growth of the mass

〈Mc(ℓB)〉 ∼ eℓB/ℓ1, (6)

with ℓ1 ≈ 0.78 in accordance with the small-world effect Eq. (1), as seen in Fig. 3a.

The topology of scale-free networks is dominated by several highly connected hubs— the

nodes with the largest degree— implying that most of the nodes are connected to the hubs

via one or very few steps. Therefore the average performed in the cluster growing method

is biased; the hubs are overrepresented in Eq. (6) since almost every node is a neighbor of

a hub. By choosing the seed of the clusters at random, there is a very large probability of

including the hubs in the clusters. On the other hand the box covering method is a global

tiling of the system providing a flat average over all the nodes, i.e. each part of the network

is covered with an equal probability. Once a hub (or any node) is covered, it cannot be

covered again. We conclude that Eqs. (3) and (4) are not equivalent for inhomogeneous

networks with topologies dominated by hubs with a large degree.

The biased sampling of the randomly chosen nodes is clearly demonstrated in Fig. 3b.

We find that the probability distribution of the mass of the boxes for a given ℓB is very

broad and can be approximated by a power-law: PℓB
(MB) ∼ M−2.2

B in the case of WWW

and ℓB = 4. On the other hand, the probability distribution of Mc is very narrow and can

be fitted by a log-normal distribution (see Fig. 3b). In the box covering method there are

many boxes with very large and very small masses in contrast to the peaked distribution

in the cluster growing method, thus showing the biased nature of the latter method in

inhomogeneous networks. This biased average leads to the exponential growth of the mass

in Eq. (6) and it also explains why the average distance is logarithmic with N as in Eq. (1).

The box counting method provides a powerful tool for further investigations of the net-

work properties as it enables a renormalization procedure, revealing that the self-similar

properties and the scale-free degree distribution persists irrespective of the amount of coarse-

graining of the network.

Subsequent to the first step of assigning the nodes to the boxes we create a new renor-

malized network by replacing each box by a single node. Two boxes are then connected,

provided that there was at least one link between their constituent nodes. The second
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column of the panels in Fig. 1a shows this step in the renormalization procedure for the

schematic network, while Fig. 1b shows the results for the same procedure applied to the

entire WWW for ℓB = 3.

The renormalized network gives rise to a new probability distribution of links, P (k′),

which is invariant under the renormalization:

P (k) → P (k′) ∼ (k′)−γ. (7)

Figure 2d supports the validity of this scale transformation by showing a data collapse of

all distributions with the same γ according to (7) for the WWW.

Further insight arises from relating the scale-invariant properties (3) to the scale-free

degree distribution (2). Plotting (see inset in Fig. 2d for the WWW) the number of links

k′ of each node in the renormalized network versus the maximum number of links k in each

box of the unrenormalized network exhibits a scaling law

k → k′ = s(ℓB)k. (8)

This equation defines the scaling transformation in the connectivity distribution. Empir-

ically we find that the scaling factor s(< 1) scales with ℓB with a new exponent dk as

s(ℓB) ∼ ℓ−dk

B , (9)

shown in Fig. 2a for the WWW and actor networks (with dk = 2.5 and dk = 5.3, respec-

tively), in Fig. 2b for the protein networks (dk = 2.1 for E. coli and dk = 2.2 for H. sapiens)

and in Fig. 2c for the cellular networks with dk = 3.2.

Equations (8) and (9) shed light on how families of hierarchical sizes are linked together.

The larger the families, the fewer links exist. Surprisingly the same power-law relation exists

for large and small families represented by Eq. (2).

From Eq. (7) we obtain n(k)dk = n′(k′)dk′, where n(k) = NP (k) is the number of

nodes with links k and n′(k′) = N ′P (k′) is the number of nodes with links k′ after the

renormalization (N ′ is the total number of nodes in the renormalized network). Using Eq.

(8) we obtain n(k) = s1−γn′(k). Then, upon renormalizing a network with N total nodes we

obtain a smaller number of nodes N ′ according to N ′ = sγ−1N . Since the total number of

nodes in the renormalized network is the number of boxes needed to cover the unrenormalized
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network at any given ℓB, we have N ′ = NB(ℓB). Then, from Eqs. (3) and (9) we obtain the

relation between the three indexes

γ = 1 + dB/dk. (10)

Equation (10) is confirmed for all the networks analyzed here (see Supplementary Ma-

terials). In all cases the calculation of dB and dk and Eq. (10) gives rise to the same γ

exponent as that obtained in the direct calculation of the degree distribution. The signif-

icance of this result is that the scale-free properties characterized by γ can be related to a

more fundamental length-scale invariant property, characterized by the two new indexes dB

and dk.

Summarizing, we elucidate a fundamental property of a wide variety of complex networks:

that of a scale-invariant topology. Concepts first introduced for the study of critical phe-

nomena in statistical physics are shown to be valid here in the characterization of a different

class of phenomena: the topology of complex networks. One could envisage a great deal of

fundamental information being understood by the application of renormalization techniques

to this kind of complex system. For instance, networks with similar degree distributions

are characterized by different self-similar exponents, thus indicating that they may belong

to different “universality classes”. It is as though each node (ranging from web-pages in

the WWW, to people in social networks, to proteins and substrates in cellular networks)

were connected to other nodes under a single self-organizing principle according to which

groups of nodes of all sizes self-organize too; such that everything links with everything else,

governed by one universal dynamics in Nature [20].

Acknowledgments: This work was supported by the National Science Foundation.
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FIG 1. The renormalization procedure to complex networks. a, Demonstration of the

method for different ℓB and different stages in a network demo. The first column depicts

the original network. We tile the system with boxes of size ℓB (different colors correspond

to different boxes). All nodes in a box are connected by a minimum distance smaller than

the given ℓB. For instance, in the case of ℓB = 2, we identify four boxes which contain

the nodes depicted with colors red, orange, white, and blue, each containing 3, 2, 1, and 2

nodes, respectively. Then we replace each box by a single node; two renormalized nodes are

connected if there is at least one link between the unrenormalized boxes. Thus we obtain the

network shown in the second column. The resulting number of boxes needed to tile the net-

work, NB(ℓB), is plotted in Fig. 2 versus ℓB to obtain dB as in Eq. (3). The renormalization

procedure is applied again and repeated until the network is reduced to a single node (third

and fourth columns for different ℓB). b, Three stages in the renormalization scheme applied

to the entire WWW. We fix the box size to ℓB = 3 and apply the renormalization for four

stages. This corresponds, for instance, to the sequence for the network demo depicted in the

second row in part a of this figure. We color the nodes in the web according to the boxes to

which they belong. The network is invariant under this renormalization as explained in the

legend of Fig. 2d and the Supplementary Materials.

FIG 2. Self-similar scaling in complex networks. a, Upper panel: Log-log plot of the NB

vs ℓB revealing the self-similarity of the WWW and actor network according to Eq. (3).

Lower panel: The scaling of s(ℓB) vs. ℓB according to Eq. (9). The errors bars are of

the order of the symbol size. b, Same as (a) but for two protein interaction networks: H.

sapiens and E. coli. Results are analogous to (b) but with different scaling exponents. c,

Same as (a) for the cellular networks of A. fulgidus, E. coli and C. elegans. d, Invariance of

the degree distribution of the WWW under the renormalization for different box sizes, ℓB.

We show the data collapse of the degree distributions demonstrating the self-similarity at

different scales. The inset shows the scaling of k′ = s(ℓB)k for different ℓB, from where we

obtain the scaling factor s(ℓB). Moreover, we also apply the renormalization for a fixed box

size, for instance ℓB = 3 as shown in Fig. 1b for the WWW, until the network is reduced to

a few nodes and find that P (k) is invariant under these multiple renormalizations as well,

for several iterations (see Supplementary Materials).
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FIG. 3. Different averaging techniques lead to qualitatively different results. a, Mean

value of the box mass in the box counting method, 〈MB〉, and the cluster mass in the cluster

growing method, 〈Mc〉, for the WWW. The solid lines represent the power-law fit for 〈MB〉

and the exponential fit for 〈Mc〉 according to Eqs. (5) and (6), respectively. b, Probability

distribution of MB and Mc for ℓB = 4 for the WWW. The curves are fitted by a power-law

and a log-normal distribution, respectively.
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SUPPLEMENTARY MATERIALS

THE BOX COVERING METHOD

Since the box covering method is central to the understanding of the scale-invariant

properties of networks, we describe it in more detail here. Figure 4a shows the same network

as in Fig. 1a for the case ℓB = 2. We tile the system by first assigning nodes 1 and 2 to

the box colored in blue. Notice that the maximum distance between the nodes of a given

box is ℓB − 1. Thus, node 8 would not be in the blue box since its distance from node 2 is

ℓ = 2 (even though its distance from 1 is ℓ = 1). Then we cover the nodes 6 and 7 with the

orange box, and the nodes 3, 4, and 5 with the red box. Finally, the last node 8 is assigned

to the green box. The number of boxes to cover the network is then NB = 4.

The renormalization is then applied by replacing each box by a single node. Thus, nodes

1 and 2 will be combined into a single node as indicated by the arrow from the first panel

to the second panel in Fig. 4a. This renormalized node is connected with the orange and

green boxes because there is a link between nodes 2 and 7, and 1 and 8, respectively. The

same rule applies to the other boxes. The renormalized network is shown in the second

panel. The system is then tiled again with boxes; in this case two boxes (blue and red) are

needed to cover the entire network. The two boxes are then replaced by nodes and a second

renormalized network is obtained as shown in the third panel. Finally, the last two nodes

belong to the same (red) box and are replaced by a single node.

This procedure is applied to the WWW in Fig. 1b. The main panel corresponds to the

first stage in the renormalization of the web for ℓB = 3. The procedure is applied again

obtaining the remaining panels in Fig. 1b until the web is reduced to a single box in the

last panel. The colors of the nodes corresponds to the boxes to which they belong.

In Fig. 2d we show the invariance of the degree distribution P (k) under the renormaliza-

tion performed as a function of the box size in the WWW. The other networks analyzed in

this study present the same invariant property. It is important to mention that the networks

are also invariant under multiple renormalizations applied for a fixed box size ℓB. This cor-

responds, for instance, to the stages depicted in Fig. 1a in the second row for ℓB = 3 for the

network demo. Figure 5 shows the invariance of P (k) for the WWW after several stages of
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FIG. 4: Details of the box covering method for a, ℓB = 2. b, A different covering for the same

network as in (a) for ℓB = 2. Different coverings give raise to the same exponents as explained in

the text.
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FIG. 5: Invariance of the degree distribution of the WWW under multiple renormalizations done

at fixed ℓB = 3. The stages 1, 2, and 3 correspond to the networks depicted in the first three stages

in Fig. 1b.

the renormalization for a fixed ℓB = 3, and it is the analogous of Fig. 2d for different box

size. The stages 1, 2, and 3 correspond to the networks depicted in the first 3 stages in Fig.

1b.

From the above explanation it should be clear that there are many ways to tile the

network. For instance in Fig. 4b we show another tiling. In this case we assign nodes 4

and 7 together in a single box instead of nodes 6 and 7 as in Fig. 4a. This tiling results in
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an extra box needed to cover node 6 and therefore in a larger number of nodes to tile the

system, NB = 5.

While there are many ways to assign nodes to the boxes, we notice that the rigorous

mathematical definition of Eq. (3) corresponds to the minimum number of boxes needed to

cover the network [14]. This minimization does not have any consequence for the determi-

nation of the fractal dimension in homogeneous clusters. However, it may become relevant

when calculating the self-similar exponent of a complex network with a widely distributed

number of links. Finding the minimum number of boxes to cover the network is a hard

optimization problem to solve, analogous to the graph coloring problem in the NP-complete

complexity class. This minimization problem has to be solved by an exhaustive numerical

search since there is no numerical algorithm to solve this kind of problems.

We have performed the search over a limited part of the phase-space for the WWW to

obtain an estimation of the average and the minimum number of boxes needed to tile the

network for every value of ℓB. We find that the average value of the boxes is very close to

the estimated minimum number of boxes. Moreover, we find that the minimization is not

relevant and any covering gives rise to the same exponent.

SCALE-FREE TREE STRUCTURE

The underlying meaning of the existence of scale-free networks which are self-similar is

yet to be deciphered, but some insight can be gained by examining the simplest structure

of a known network of that kind: a tree network which has been characterized using field

theoretical arguments and fractal dimensions in [21].

The sequence of renormalization steps depicted in Fig. 1 suggests the following scheme:

one begins with a single node and then constructs the network by applying the renormal-

ization procedure in a reversed fashion. This can be achieved by following the procedure in

Fig. 1 for a specific value of ℓB.

More specifically, a single node with a large number of links is first connected to the

next generation of nodes. For every node we assign a number of links from a power-law

distribution with a given γ. The next layer of the tree is generated in the same way. A tree

structure with a power-law degree distribution and self-similar topology emerges which is

depicted in Fig. 6a.
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FIG. 6: The scale-free tree structure and the random scale-free model. a, Example of a scale-

free tree structure. Nodes with a power-law degree distribution are connected in a tree structure

without loops. b, The log-log plot of NB vs ℓB reveals a self-similar structure for the scale-free

tree (upper panel) while s(ℓB) scales as in Eq. (9) (lower panel). In contrast the random scale-free

network where nodes (with a power-law distribution of links) are connected at random shows a

lack of self-similarity expressed in the exponential decrease with ℓB in the upper panel.

This is corroborated numerically in Fig. 6b where we study a scale-free tree structure

with 192,827 nodes and λ = 2.3, and we find dB = 3.4 and dk = 2.5. The parallels between

the features of such a simple structured network and those discussed in this paper suggest

that this simplified view may lie at the core of more complex self-similar networks.

Moreover, we also calculate the average mass of the boxes and the mass of the clusters

in the box covering method and the cluster covering method, respectively, and we find the

power law of Eq. (5) and the exponential behaviour of Eq. (6) (see Fig. 7a) in agreement

with the results of the real networks analyzed in the main manuscript, Fig. 3a. Figure 7b

shows the probability distribution of MB (power-law) and Mc (log-normal) in agreement

with previous results as well, Fig. 3b.

INTERNET

It is interesting to note that not all complex networks show the clear self-similarity of

the networks presented so far. We analyze the Internet composed of computers and routers
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FIG. 7: Results for the scale-free tree model. a, Mean value of the box mass in the box counting,

〈MB〉, and mean value of the cluster mass in the cluster growing method, 〈Mc〉 versus ℓB . b,

Probability distribution of MB and Mc for ℓB = 5. The results are in agreement with the finding

of real networks in Fig. 3. A power-law distribution is found for MB while a log-normal distribution

is found for Mc as shown by the fits.

linked by physical lines such as the database collected by the SCAN project (the “Mbone”,

www.isi.edu/scan/scan.html, we also analyze the database of the Internet Mapping Project

[22] and found similar results). Figure 8 shows the result of NB(ℓB). We fit the curve with

a modified power-law

NB(ℓB) ∼ (ℓB + ℓc)
−dB , (11)

with ℓc = 14.9 representing a cut-off and dB = 8.5, suggesting a large self-similar exponent.

The decay of NB with ℓB is faster than a power-law and slower than exponential as shown

in the inset of Fig. 8.

Thus these networks lack the clear self-similar structure found for the WWW, actors and

the biological networks. However, we find that the distribution of P (MB) remains a power

law and the degree distribution P (k) is invariant under the renormalization suggesting that

some self-similar properties might still be valid for the Internet. We notice that Internet

maps are made by programs that use the IP protocol to trace the connections between each

registered node in the Internet. These maps are incomplete since they map a few routers

from each domain and also due to the existence of firewalls. Thus, the apparent lack of

self-similarity might be due to incomplete information of the network.
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FIG. 8: Internet. Log-log plot of NB(ℓB). The solid line represents the modified power law fit, Eq.

(11). The inset shows a linear-log plot indicating that the decay is slower than exponential.

PROTEIN-PROTEIN INTERACTION NETWORKS

We also analyze the protein interaction networks of the fruit fly D. melanogaster as given

in [23], the bacterium H. pylori [24], the baker’s yeast S. cerevisiae [25], and the nematode

worm C. elegans [26], which are all available via the DIP database [17]. Figure 9 shows

the results of NB versus ℓB indicating that their behaviour is in between a pure power-law

decay and a pure exponential. As with the Internet data, we are able to fit the results with

Eq. (11) with ℓc = 7.2 and dB = 7.6 for C. elegans. For H. pylori and D. melanogaster

the fit is a pure exponential NB(ℓB) ∼ exp(−ℓB/ℓe) with ℓe ≈ 1, while for S. cerevisiae the

data could be fitted either by an exponential or by large values of ℓc and dB (note that the

exponential is the limit of Eq. (11) for ℓc → ∞, dB → ∞ and ℓc/dB = constant). On the

other hand, we observe that for small scales, NB seems to display the same power law found

for E. coli and H. sapiens. The lack of clear self-similarity in these networks might be due

to the incompleteness of these databases which are continuously being updated with newly

discovered physical interactions [16].
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FIG. 9: Scaling for the protein-protein interaction networks. Log-log plot of NB versus ℓB for

different protein-protein interaction networks. While E. coli and H. sapiens show a clear power law

behavior, the other protein networks show a modified power-law behaviour or a pure exponential

decay. The inset shows a linear-log plot of NB(ℓB).

RANDOM SCALE-FREE NETWORK

Next we introduce an example of a model lacking self-similarity: the random scale-free

model. This model consists of nodes to which a number of links are assigned with a power-

law degree distribution and then connected randomly. Such a network shows a small world

effect and a scale-free property but is not self-similar. We numerically find that the number

of boxes decays exponentially with the box size (see Fig. 6b). Moreover, while Eq. (8) is

still valid in this case, the power law relation in Eq. (9) is replaced by an exponential law.

We conjecture that the reason for this is a clustering of hubs; by assigning randomly the

connections between the nodes, two nodes with a large number of links will have a large

probability to be connected. This induces spatial correlations in the values of k which may

explain the breakdown of self-similarity. In contrast, the simple tree-structure proposed

above does not cluster the hubs by construction. A summary of our results is presented in

Table I.
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FIG. 10: Barabási-Albert model of scale-free networks with preferential attachment for 150,000

nodes and m = m0 = 3 and m = m0 = 5. m0 is the initial number of nodes in the system and m is

the number of links of a newly created node in the dynamical growth of the network [15]. Log-log

plot of NB versus ℓB showing the lack of a power law behaviour. The inset shows a linear-log plot

indicating that NB decreases faster than exponential with ℓB.

THE BARABÁSI-ALBERT MODEL AND THE ERDÖS-RÉNYI RANDOM

GRAPH AT CRITICALITY

We also analyzed the Barabási-Albert model of complex networks [15] (which introduces

the concepts of preferential attachment to describe the dynamics of scale-free networks).

The results of NB(ℓB) are shown in Fig. 10 for different parameters in the model (see [15]

for details) reveling that the structure is not self-similar; NB seems to decrease faster than

exponential with ℓB.

It is interesting to compare our results with the random Erdös-Rényi graph [8, 9] at the

critical percolation threshold. In this case the largest cluster has self-similar properties and

Eq. (5), 〈MB(ℓB)〉 ∼ ℓdB

B , is valid with dB = 2 [27]. We corroborate this result in Fig. 11

showing the scaling of the number of boxes NB with the box size ℓB. However, for this case

the network is not small-world since Eq. (6) is not valid— as well as Eq. (1)— but rather

the mean distance ℓ̄ scales as 〈Mc〉
1/2, i.e., a power-law relation rather than the logarithmic
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FIG. 11: Erdös-Rényi random graph at criticality. Log-log plot of NB versus ℓB showing the

self-similar exponent dB = 2 which is obtained for large distances.

Network dB dk 1 + dB/dk γ

Eq. (10) Eq. (2)

WWW 4.1 2.5 2.6 2.6

Actor 6.3 5.3 2.2 2.2

E. coli (PIN) 2.3 2.1 2.1 2.2

H. sapiens (PIN) 2.3 2.2 2.0 2.1

43 cellular networks 3.5 3.2 2.1 2.2

Scale-free tree 3.4 2.5 2.4 2.3

TABLE I: Summary of the exponents obtained for the scale-invariant networks studied in the

manuscript.

relation characteristic of small world networks.
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CELLULAR NETWORKS

The WIT database [18] (http://igweb.integratedgenomics.com/IGwit) of cellular net-

works considers the cellular functions divided according to bioengineering principles contain-

ing datasets for intermediate metabolism and bioenergetics (core metabolism), information

pathways, electron transport, and transmembrane transport. The metabolic network is a

subset of all reactions that take place in the cell. Since this is the largest part of the network

we analyze it separately and compare it with the full biochemical reaction network. The

data presented in Fig. 2c represents the full biochemical reaction networks of only three sub-

strates. Here we present results of the 43 different substrates represented in the database for

the metabolic and full networks. The following figures show the results of NB vs ℓB. Both

the metabolic and full networks display the power law relationship of self-similar networks

with the same exponent (within error bars) for all the organisms considered (the metabolic

networks show a finite size effect due to their smaller size). We find an average dB = 3.5.

The solid line in the figures represent the average fit. The values are reported in Table I.

Aquifex aeolicus
Actinobacillus

actinomycetemcomitans
Archaeoglobus fulgidus

Aeropyrum pernix Arabidopsis thaliana Borrelia burgdorferi
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Bacillus subtilis Clostridium acetobutylicum Caenorhabditis elegans

Campylobacter jejuni Chlorobium tepidum Chlamydia pneumoniae

Chlamydia trachomatis Synechocystis sp. Deinococcus radiodurans

Escherichia coli Enterococcus faecalis Emericella nidulans
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Haemophilus influenzae Helicobacter pylori Mycobacterium bovis

Mycoplasma genitalium Methanococcus jannaschii Mycobacterium leprae

Mycoplasma pneumoniae Mycobacterium tuberculosis Neisseria gonorrhoeae

Neisseria meningitidis Oryza sativa Pseudomonas aeruginosa
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Pyrococcus furiosus Porphyromonas gingivalis Pyrococcus horikoshii

Streptococcus pneumoniae Rhodobacter capsulatus Rickettsia prowazekii

Saccharomyces cerevisiae Streptococcus pyogenes
Methanobacterium

thermoautotrophicum

Thermotoga maritima Treponema pallidum Salmonella typhi
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Yersinia pestis
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