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Introduction

A key question about the function of the cortex is how
sensory input and ongoing cortical activity combine to
generate a response to a given stimulus. This issue has
become increasingly important due to the recognition that
the high variability of responses seen in cortical cells is
due, in part, to the presence of ongoing (or spontaneous)
activity (Arieli, Sterkin, Grinvald, & Aertsen, 1996;
Kenet, Arieli, Grinvald, & Tsodyks, 1997).
Up until recently, it was thought that cortical sponta-

neous activity was random and unstructured, but we now
know this is not the case. First, spontaneous activity in
individual cells is tightly coupled to that of a specific
population of neurons (or cell assembly) (Song, Sjöström,
Reigl, Nelson, & Chklovskii, 2005; Tsodyks, Kenet,

Grinvald, & Arieli, 1999; Yoshimura & Callaway,
2005). Second, these patterns of activity appear to
be related to the intrinsic connectivity of the cortex
(Blumenfeld, Bibitchkov, & Tsodyks, 2006; Goldberg,
Rokni, & Sompolinsky, 2004; Kenet, Bibitchkov, Tsodyks,
Grinvald, & Arieli, 2003). Theoretical models of V1
demonstrate how structured spontaneous activity could
arise in such circuits (Ben-Yishai, Hansel, & Sompolinsky,
1997; Blumenfeld et al., 2006; Bressloff & Cowan, 2003;
Hansel & Sompolinsky, 1996; Tsodyks et al., 1999). This
is interesting because it suggests that, in principle, there is
much to learn about neuronal connectivity in V1 just by
observing its spontaneous patterns of activity.
Another intriguing experimental result is that sponta-

neous cortical activity resembles, in some respects, those
observed during natural image stimulation (Fiser, Chiu, &
Weliky, 2004; Ikegaya et al., 2004; Kenet et al., 2003;
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MacLean, Watson, Aaron, & Yuste, 2005). This might be
a consequence of the low average contrast of natural
scenes (Chirimuuta, Clatworthy, & Tolhurst, 2003;
Clatworthy, Chirimuuta, Lauritzen, & Tolhurst, 2003).
Altogether, these findings suggest a model of cortical
computation where a relatively weak input effectively
serves to push the patterns of activity around in a low-
dimensional manifold. It is possible that the structure of
this manifold is linked to the structure of the signals one
naturally encounters in the environment (Simoncelli &
Olshausen, 2001). Thus, natural signals may shape the
architecture of V1 and this, in turn, may constrain the
dynamics of the network. Our goal is to study some basic
aspects of the patterns of activity in V1 evoked by natural
images and during spontaneous activity.
Here we concentrate on a topological characterization

of population activity in visual cortex. To introduce the
topic, and to illustrate how such analysis can be useful,
consider the result by Kenet et al. (2003), who found that
spontaneous cortical states tend to reproduce the patterns
evoked by oriented stimuli. If cortical activity is restricted
to patterns evoked by an oriented stimulus, and consider-
ing that orientation is a circular variable, the resulting
hypothesis is that activity patterns must have a topological
structure equivalent to that of a circle (Ben-Yishai, Bar-Or,
& Sompolinsky, 1995; Blumenfeld et al., 2006; Goldberg
et al., 2004). In other words, the basic question about the
structure of the data is topological in nature.
Unfortunately, testing such hypotheses using experi-

mental data is difficult (Goldberg et al., 2004) and up until
recently rigorous methods to study the topological
structure of data were not available. Furthermore, one
would like to develop methods that provide an estimate of
the topological structure of a data set without any prior
information about what those might be. Again, using the
Kenet et al. (2003) study as an example, the authors found
that only 20% of the time the cortex was in a state that
correlated significantly to that evoked by an oriented
stimulus. What is the cortical state during rest of the time?
Perhaps, these investigators observed only part of the
manifold of cortical activity, while the true underlying
object is more complicated, but still low dimensional. One
of the contributions of our study is to offer the first
estimate of the underlying topological structure of V1
activity.
To anticipate the results, we found that the patterns of

spontaneous and driven activity in V1 populations are
similarly structured and consistent with the topology of
the 2<sphere.
To familiarize the reader with the technique, we begin

by introducing the basic ideas at a conceptual level, while
a rigorous and detailed description is provided in
Appendix A. We validate the method on simulated data
by recovering the topological structure of data sets where
the “ground truth” is known and study its robustness to
changes in spike statistics and the homogeneity of the
population. Then, we present our first experimental results

from the application of the method to array recordings in
macaque primary visual cortex. We conclude by providing
a simple model of how such patterns may result from
tiling of the cortex by cortical maps and their mutual
relationships.

Methods

Conceptual description of topological
analysis

Consider a world where objects are made of elastic
rubber. Two objects are considered equivalent if they can
be deformed into each other without tearing the material.
If such a transformation between X and Y exists, we say
they are topologically equivalent and write X È Y;
otherwise, we write X M Y. This notion of equivalence is
illustrated in Figure 1, where the reader is invited to
mentally visualize the possible transformations between
the various objects to verify the stated equivalence
relationships.
From this exercise, it is evident that a possible reason

for two objects not to be equivalent is that they differ in
the number of holes. Thus, simply counting holes can
provide a signature for the object at hand. Holes can exist
in different dimensions. A one-dimensional hole is
exposed when a one-dimensional loop (a closed curve)
on the object cannot be deformed into a single point
without tearing the loop. If two such loops can be deformed
into one another they define the same hole, which should be
counted only once. Analogous definitions can be invoked
in higher dimensions. For example, a two-dimensional
hole is revealed when a closed two-dimensional oriented
surface on the object cannot be deformed into a single
point (Figure 2).
This notion of counting holes of different dimensions is

formalized by the definition of Betti numbers. The Betti
numbers of an object X can be arranged in a sequence,
b(X) = (b0, b1, b2, I), where b0 represents the number of
connected components, b1 represents the number of one-
dimensional holes, b2 the number of two-dimensional
holes, and so forth. An important property of Betti
sequences is that if two objects are topologically equiv-
alent (they can be deformed into each other) they share the
same Betti sequence. One must note, as we will shortly
illustrate, that the reverse is not always true: two objects
can be different but have the same Betti sequence.
Before proceeding further, it helps to illustrate these

notions by means of examples (Figure 2). A single point
has a Betti sequence equal to (1, 0, 0, I) since it has only
one component and no holes of any dimension (Figure 2a).
A circle has a Betti sequence (1, 1, 0, I), as there is a
single connected component and there is a single loop that
cannot be deformed into a single point (Figure 2b). A
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torus has a Betti sequence (1, 2, 1, 0, I), since it has a
single connected component, two different loops that
cannot be deformed into a point (shown in red in the
bottom panel of Figure 2c), and there is a two-dimensional
surface that cannot be deformed into a point (shown in
orange in Figure 2c). The Klein bottle has the same
sequence as the torus (1, 2, 1, 0, I). This shows that
while two objects that are equivalent must have the same
Betti sequences, two objects that are not equivalent do not
necessarily have different sequences. Finally, a sphere has

a sequence (1, 0, 1, 0, I), as any one-dimensional loop on
its surface can be deformed into a point. The Betti
sequence therefore provides a signature (albeit not unique)
of the underlying topology of the object.
These definitions work for smooth continuous objects.

But suppose now that instead of a continuous rubbery
object we are faced with a finite set of (noisy) points
sampled from it, which may represent actual experimental
data. How can one estimate the Betti numbers of the
original object from these samples? The proposed method

Figure 2. Betti numbers provide a signature of the underlying topology. Illustrated in the figure are five simple objects (topological spaces)
together with their Betti number signatures: (a) a point, (b) a circle, (c) a hollow torus, (d) a Klein bottle, and (e) a hollow sphere. For the
case of the torus (c), the figure shows three loops on its surface. The red loops are “essential” in that they cannot be shrunk to a point, nor
can they be deformed one into the other without tearing the loop. The green loop, on the other hand, can be deformed to a point without
any obstruction. For the torus, therefore, we have b1 = 2. For the case of the sphere, the loops shown (and actually all loops on the
sphere) can be contracted to points, which is reflected by the fact that b1 = 0. Both the sphere and the torus have b2 = 1, this is due to the
fact both surfaces enclose a part of space (a void).

Figure 1. Topological equivalence in rubber-world. The figure illustrates the notion of equivalence by showing several objects (topological
spaces) connected by the symbols È when they are equivalent or by M when they are not. The reader should think that all the objects
shown are made of an elastic material and visualize the equivalence of two spaces by imagining a deformation between to objects.
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works by building an object, called the Rips complex,
based on a given distance function d(x, y) between any
two points.
To build the Rips complex, we begin by selecting a

fixed parameter (, and we proceed to connect all points for
which d(x, y) G ( with edges, all triplets for which all
pairwise distances are smaller than ( with triangles, all
quadruplets for which all pairwise distances are smaller
than ( with tetrahedra, and so on. The Betti numbers are
then computed based on the Rips complexes at different
values of (. The parameter ( effectively controls the
“spatial scale” of analysis.
The basic idea of the method is to track the different

“holes” across different spatial scales of analysis. We
visualize the results of the analysis by plotting “birth” and
“death” intervals of individual holes of different dimen-
sions as the spatial scale ( goes from zero to infinity. For
each Betti number, we keep a separate graph. Connected
components are drawn as horizontal lines in the b0 graph,

one-dimensional holes correspond to horizontal lines in
the b1 graph, two-dimensional holes in the b2 graph, and
so on. For each hole, the horizontal line has its endpoints
at the values of ( at which the structure was first created
and then destroyed. The set of all these lines together is
called a barcode.
An example of the computation of the Rips complex at

various levels of ( and the corresponding barcode is
shown in Figure 3. The data are randomly sampled points
from a torus. In each panel, the left three graphs show the
barcode obtained from this calculation. The graph on the
top corresponds to b0, meaning that each horizontal line
represents a different connected component; the middle
graph corresponds to b1, where each horizontal line
corresponds to a one-dimensional loop; the bottom graph
corresponds to b2, where horizontal lines represent two-
dimensional holes. The illustrations to the right of the
barcode show the state of the Rips complex for the
selected value of (, which is indicated by the red vertical

Figure 3. Barcodes and Rips complexes. The figure illustrates the construction of the Rips complex and the generation of barcodes (only
the first three Betti numbers are displayed) for 50 points randomly sampled from the surface of a torus. Panels a to d show the barcode
“sliced” at different values of ( (the horizontal axis) with the corresponding Rips complexes shown to the right. The corresponding Betti
numbers for each level of ( can be obtained by counting the number of horizontal lines crossed by the vertical red line in each graph.
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bars in the barcodes. The value of ( increases as we move
from Figure 3a to Figure 3d. The blue edges in the Rips
complex link the points for which d(x, y) G (. The panels
to the right show red triangles defined by triplets of points
for which the pairwise distances satisfy d(x, y) G (. The
blue triangles show triangles that will later be added to the
Rips complex at higher values of ( but should be
considered “holes” for the level at which they are being
shown. For simplicity, we do not show higher-order
building blocks, such as tetrahedra.
For a small value of (, only one edge exists and the

resulting structure has many different connected compo-
nents and no holes of any dimension (Figure 3a, top
panels). The Betti sequence for this value of ( can be
recovered by counting how many horizontal lines (corre-
sponding to different holes) the red vertical line crosses in
each of the graphs. The resulting sequence is (b0, b1, b2) =
(50, 0, 0). At a higher value of (, we see more edges being
added (thereby reducing the number of connected compo-
nents) but still no holes of any dimensions (Figure 3b).
The corresponding sequence is (b0, b1, b2) = (38, 0, 0). At
the next higher value of (, we finally obtain a single
connected component (Figure 3c). The vertical bar in the

graph corresponding to b1 crosses two horizontal lines,
meaning that there are two one-dimensional holes.
However, the red line does not intersect any horizontal
lines in the graph for b2 meaning that there are no two-
dimensional holes at this scale (this is because some of the
triangles still need to be filled-in). The Betti sequence for
this value of ( is then (b0, b1, b2) = (1, 2, 0). Finally, at a
slightly higher value of (, the correct signature of the torus
emerges (b0, b1, b2) = (1, 2, 1) (Figure 3d). This Betti
sequence then persists for a long interval of (.
As is often the case in scale–space methods, a “rule of

thumb” is it that a signature (b0, b1, b2, I) that is stable
over a “long” interval of spatial scales ((low, (high) is a
good candidate for our estimate of the topological
structure of the data set. In this case, one would propose
(b0, b1, b2) = (1, 2, 1) as our guess for the underlying
topology of the space. We will see how a statistical
method can be developed to estimate the probability that
such signature could have arisen by chance.
Useful animations of the construction of barcodes and

Rips complexes for simulated data sets obtained by noisy
samples from a circle, sphere and torus are shown in
Figure 4. The format of the animation parallels the one in

Figure 4. Animations of barcodes and Rips complexes for data points consistent with a circle (top), sphere (center), and torus (bottom).
The animation proceeds from low values of ( to high values (that is, from fine to coarse spatial scales). Clicking on each of the figures will
link to a movie.
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Figure 3. The red bar on the barcode indicates value of (,
which moves from left to right, as the spatial scale goes
from fine to coarse over the animation sequence. The
middle structure illustrates the data in 3D space (rotating
over time for visualization purposes) and the edges (or
1-simplices) being formed as ( increases. The graph on
the right shows the triangulation (or 2-simplices) being
created as ( increases. In all three examples, it can be seen
how at an appropriate scale of analysis, the constructions
yield the correct Betti numbers for these objects.
The basic strategy is reminiscent of prior scale–space

approaches, such as the analysis of signals by tracking the
location of zero-crossings across scale (Florack, Romeny,
Koenderink, & Viergever, 1992; Hummel & Moniot,
1989; Yuille & Poggio, 1985, 1986). Specifically, one
could attempt an analogy between the barcodes, which
track topological structures as a function of scale, and
zero-crossing “fingerprints,” which track the location of
zero-crossings (and their elimination) across scale
(Babaud, Witkin, Baudin, & Duda, 1986; Witkin,
Terzopoulos, & Kass, 1987; Yuille & Poggio, 1985).

Validation of the method

Before applying the method to multi-unit recordings in
primary visual cortex, it seemed prudent to evaluate how
the technique performs with simulated data where the
underlying topology was known to us. Another objective of
these computational studies was to estimate the minimum
number of neurons and mean firing rates required to
recover the correct topological structure of different
objects, such as a circle and a torus. Such information
could subsequently be used to design our experiments.

Validation for a circle

As mentioned above, a circle is expected if cortical
activity is dominated by neuronal responses to stimulus
orientation. We evaluated the method’s ability to recover
the structure of a circle from the simulation of a
population of cells with homogeneous tuning curves and
preferred orientations equally spaced around the circle.
The tuning curve for the ith cell is given by:

1i Eð Þ ¼ rmax exp . cos Ej2: i=Nð Þð Þ=exp .ð Þ; ð1Þ

for i = 0, I, N j 1. Here, N represents the total number
of cells in the population, . determines the bandwidth of
tuning, and rmax the maximum spike rate. These rate
functions were used to generate spike counts that were
Poisson distributed. We selected a value . = 2 to match
the average tuning as observed experimentally (Ringach,
Shapley, & Hawken, 2002) (Figure 5a).
To assess the amount and quality of data required to

recover the structure of the data, we ran simulations for
various combinations of (rmax, N). In all cases, we

simulated 100 presentations of 18 orientations equally
spaced around the circle. Thus, in all conditions, our data
set (or point cloud) consisted of 1800 points (Figure 5b).
Given this simulated data, we applied our algorithm to
calculate the maximum interval of the parameter ( for
which we observe the signature of a circle: (b0, b1, b2) =
(1, 1, 0) (Figure 5c). To estimate the likelihood that the
result could have resulted by chance, we shuffled the
elements of the data matrix in Figure 5b and re-computed
the maximal length a total of 100 times. The probability
that the measured length was obtained by chance was
assessed from this empirical distribution (Figure 5d).
The average probability across 10 realizations of such

simulations for each pair yielded p(rmax, N), which is
plotted in the pseudo-color image of Figure 6a. The
dashed line shows the approximate boundary for detecting
a circle at a significance level of p G 0.05. This analysis
makes it evident that there is a trade-off between the
number of cells and mean spike counts per time bin that is
necessary to detect the circle at a fixed significance level.
The larger the number of neurons, the smaller the spike
rates can be and still allow for the reliable estimation of
the underlying topology. For five cells, for example, one
would need an average of È4.5 spikes per time bin; for
10 cells, on the other hand, the rates can be as low as
1.5 spikes per time bin. This dependence indicates that
the total number of spikes collected is a key variable
controlling the statistical power of the technique.

Validation for a torus

A toroidal representation may arise from a neuronal
population responding to two circular variables, such as
orientation and color hue. We investigated the ability of
the technique to recover the structure of a torus when we
simulated a population of cells with tuning curves over
two circular variables, (E, 7) given by

1 E;7ð Þ ¼ rmax exp .E cosEþ .7 cos7
� �

=exp .E þ .7
� �

:

ð2Þ

As before, this represents the mean spike counts per bin
and the spike counts were Poisson distributed. The total
number of cells in the population will be denoted by N.
For any given population, the centers of the tuning curves,
(Ei, 7i), were chosen randomly inside the rectangle [0, :]
� [0, 2:], such that the tuning curve of the ith cell was
given

1i E;7ð Þ ¼ rmax

exp .E cos EjEið Þ þ .7 cos 7j7ið Þ� �

exp .E þ .7
� � ; ð3Þ

for i = 1, I, N. For this simulation, we used values of
.E = 2 and .7 = 1.5. Here, rmax represents the mean
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number of spike counts in a time bin. In all cases, we
simulated 100 presentations of all 400 stimuli (:k/20, :l/20),
where k, l = 0, I, 19. Thus, in all situations there are a
total of 40,000 points in the data set. We then calculated
the maximal length of the signature (b0, b1, b2) = (1, 2, 1).
To evaluate the statistical significance of the result, we
computed the same statistic for 50 random permutations of
all the elements within the data matrix.
Following the analogous procedure for the circle, for

each pair (rmax, N) we computed p(rmax, N), which is
shown in the pseudo-color image of Figure 6b. The
dashed line shows the approximate boundary for detecting
a torus at a significance level of 0.05. As for the case of
the circle, the larger the number of neurons, the smaller
the spike rates can be and still allow for the reliable
estimation of the underlying topology. For five cells, for
example, the method would require an average of È4.5
spikes per time bin, while for 15 cells, on the other hand,
the rates can be as low as 1.5 spikes per time bin.

Robustness of the method

The above results were obtained for a set of homoge-
neous cells with the same maximal rates and with Poisson
firing rates. To explore the robustness of the technique to
different spike count statistics and to heterogeneity in the
maximal responses of across the population, we per-
formed three other simulations where these were varied
for the case of the circle.
We first simulated a population with Poisson firing but

with maximum rates distributed uniformly in the range
(0.5 � rmax, 1.5 � rmax) (Figure 7, top). We then used
a negative binomial distribution to generate counts with
a variance/mean ratio of 1.9 (Kang, Shapley, &
Sompolinsky, 2004) but with a uniform rate across the
population (Figure 7, middle). Finally, we ran a simulation
with non-Poisson firing and non-uniform firing rates
(Figure 7, bottom). All the other parameters of the
simulation were exactly the same as those in the simulations
of Figure 6a. We can see that these manipulations have

Figure 5. Testing the statistical significance of barcodes. (a) We assume an initial population of Poisson-spiking neurons tuned for
orientation. (b) The simulated response of this population to the presentation of different orientations is collected into a data matrix (or
point cloud). (c) Analysis of the simulated data shows a long interval with a signature (b0, b1) = (1, 1), which correctly identifies the
underlying object as a circle. (d) We also compute the barcodes by shifting the relative positions of the columns (data shuffling). In this
case, the statistical distributions of spike counts for each axis remain unchanged, but their relationship is destroyed. By computing the
distribution of maximal b1 lengths under this null hypothesis, we can evaluate the likelihood that our data was generated by the null
hypothesis that there the coordinates of the points are independent.
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little effect on our ability to detect the structure of the
object, demonstrating the robustness of the technique.

Experimental methods
Animal preparation

Experiments were approved by the UCLA Animal
Research Committee and were performed following the
National Institutes of Health’s Guidelines for the Care
and Use of Mammals in Neuroscience. Experiments were
performed on three old-world monkeys (Macaca fascicu-
laris, 3.2–4.5 kg). Initially, animals were sedated with
acepromazine (30–60 2g/kg) and anesthetized with ket-
amine (5–20 mg/kg, im). Initial surgery was then
performed under 1.5–2.5% isoflurane. Two intravenous
lines were put in place for the continuous infusion of

drugs. A urethral catheter was inserted to collect and
monitor urine output. An endotracheal tube was inserted
to allow for artificial respiration. Pupils were dilated with
ophthalmic atropine, and the eyes protected with Tobra-
dex (Alcon Laboratories, Texas) and custom-made gas
permeable contact lenses.

Figure 7. Robustness of the method to changes in count statistics
and in the homogeneity of firing rates in the population. Top,
simulation of Poisson firing and non-uniform rates. Middle, non-
Poisson statistics and uniform rates. Bottom, non-Poisson sta-
tistics and non-uniform rates. It can be seen that there is little
impact of these in the ability of the method to recover the structure
of the embedded circle. Compare with Figure 6a.

Figure 6. The ability of the method in recovering the underlying
structure depends on the mean firing rate and number of cells.
Small p-values are regions where the algorithm correctly identified
the circle (a) and the torus (b), as the likelihood of obtaining such
barcodes by chance is very low. There is a trade-off between
number of neurons and maximal spike rates. The more neurons
the smaller the firing rates can be to be able to detect the
structures at the same level of statistical significance.

Journal of Vision (2008) 8(8):11, 1–18 Singh et al. 8



At the completion of this initial surgery, the animal was
transferred to a stereotaxic frame. At this point, anesthesia
was switched to a combination of sufentanil (0.15 2g/kg/h)
and propofol (2–6 mg/kg/h). After monitoring the anes-
thetic plane for about 10–20 minutes, we proceeded to
perform a craniotomy over primary visual cortex. Only
after the completion of all surgical procedures, including
the insertion of the electrode array, the animal was
paralyzed (Pavulon, 0.1 mg/kg/h).
To ensure a proper level of anesthesia throughout the

duration of the experiment, rectal temperature, heart rate,
noninvasive blood pressure, end-tidal CO2, SpO2, and
EEG were continually monitored by an HP Virida 24C
neonatal monitor. Urine output and specific gravity were
measured every 4–5 h to ensure adequate hydration. Drugs
were administered in balanced physiological solution at a
rate to maintain a fluid volume of 5–10 ml/kg/h. Rectal
temperature was maintained by a self-regulating heating
pad at 37.5-C. Expired CO2 was maintained between 4.5
and 5.5% by adjusting the stroke volume and ventilation
rate. The maximal pressure developed during the respira-
tion cycle was monitored to verify that there was no
incremental blocking of the airway. A broad-spectrum
antibiotic (bicillin, 50,000 IU/kg) and anti-inflammatory
steroid (dexamethasone, 0.5 mg/kg) were given at the
beginning of the experiment and every other day.

Electrophysiology

The database considered in this study was obtained using
micro-machined electrode arrays (Cyberkinetics, Salt Lake
City, UT) consisting of a square grid of 10 � 10 electrodes
1.5 mm long. The distance between neighboring electrodes
was 400 2m. The receptive fields of neurons from the
arrays overlapped significantly (only those at opposite
ends of the array were non-overlapping). Thus, our
recordings come from populations whose receptive fields
are responding to the same area of visual space.
Spike sorting was performed offline using principal

component analysis on the waveform shapes with software
developed in our laboratory. Stimuli were generated on a
Silicon Graphics O2 and displayed on monitor at a refresh
rate of 100 Hz and a typical screen distance of 80 cm. The
mean luminance was 56 cd/m2. A Photo Research Model
703-PC spectro-radiometer was used for calibration. The
eyes were initially refracted by direct ophthalmoscopy to
bring the retinal image into focus for a stimulus roughly
80 cm from the eyes. Once neural responses were isolated,
we measured spatial frequency tuning curves and maxi-
mized the response at high spatial frequencies by chang-
ing external lenses in steps of 0.25 D. This procedure was
performed independently for both eyes.

Visual stimulus

In the spontaneous condition the eyes were occluded.
The stimuli in the evoked condition were image sequences

generated by digitally sampling commercially available
videotapes in VHS/NTSC format. Images had a spatial
resolution of 320 � 240 pixels and were sampled at a
temporal rate of 15 Hz. The selected movies included both
man-made and natural landscape scenes. Six segments of
30-s duration were used, making a total of 24 minutes of
video. The movies were compressed using Silicon
Graphics’ MVC2 compression scheme (proprietary) and
stored on a disk. A Silicon Graphics O2 computer played
back the images during the experiment on a computer
screen that measured 34.3 cm wide by 27.4 cm high. The
refresh rate of the monitor was 90 Hz and each movie
image was presented for six consecutive frames. The mean
luminance of the display was 56 cd/m2. Stimulation was
monocular to the dominant eye (the other eye was occluded).
The images subtended 6 deg � 4.5 deg of visual angle and
covered all the receptive fields under measurement.

Creating point clouds

The preparation of the data points for both the sponta-
neous and driven activity during natural image stimulation
was identical. After spike-sorting signals from each
electrode we sub-selected a group of 5 neurons that showed
the highest firing rates. We worked with such subsets
because, in general, the spontaneous rate of spiking in
cortical cells is very low. To allow a reasonable comparison
between spontaneous and driven activity, we thus concen-
trated in cells with high spontaneous rate. Otherwise, the
selection of the cells was completely unbiased. Subsequent
to the channel selection, a point cloud was generated by
binning spikes in 50-ms windows. This was selected based
on the fact that in voltage sensitive measurements the
transitions between states take about 80 ms.
Spontaneous and evoked activity segments were col-

lected in lengths of 10 s each. According to the published
data (Kenet et al., 2003), these records should be long
enough to allow the detection of structured activity. Each
of these segments contained 200 points living in R5. The
software package PLEX was used with a weak witness
complex construction. PLEX is a Matlab collection of
functions for computational topology and is available in
http://math.stanford.edu/comptop/programs/. We used a
weak witness construction with 35 landmarks points
which were selected using the “max–min” procedure
(see Appendix A). The “max–min” procedure was seeded
with each one of the 200 points in the data set in order to
eliminate dependence on our initial selection. We
recorded the maximal length of persistence intervals for
b1 and b2 for each of the 200 seeds.

Statistical significance

To evaluate the probability that the barcodes could have
resulted from independent firing of neurons across the
electrodes, we generated control data sets as follows. For
each channel, we computed first the total number of
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spikes. Then, we generated a new data set by randomly
positioning the same number of spikes in time. This keeps
the total number of spikes for each neuron constant but
destroys any potential relationship between them. The
identical analysis done for the real data set was performed
for the control data sets (a total of 52700 times) generating
a null distribution for bar lengths under the hypothesis of
Poisson neurons firing independently. Finally, one can
perform a one-tail rank sum test to verify that the median
distribution of lengths in the data is significantly higher
than that expected by chance. In all our experiments the
results were highly significant (rank-sum test, p G 10j10).

Fourier analysis

As our data originates from a time series, one must
consider that neural activity may be influenced by periodic
(or quasi-periodic) physiological processes, such as
respiration, heart rate, or vasomotor activity. If neuronal
firing rate were to be modulated by these processes they
could potentially create spurious one-dimensional loops in
the resulting topology. To control for this we search for
the presence of peaks in the amplitude spectrum of the
same segments of data that formed the basis of our
experimental results. We found no statistically significant
peaks that would suggest a periodic component in our

data. Thus, we rule out the possibility that our findings
just reflect some underlying physiological mechanism
unrelated to the stimulus.

Results

Topological structure of spontaneous and
driven activity in primary visual cortex

Prior studies have revealed similarities between activity
patterns in spontaneous and evoked conditions. Here we
set out to investigate what topological structure these
patterns correspond to.
Our data were obtained from multi-electrode recordings

in primary visual cortex of macaque V1 (Figure 8a).
Using these electrode arrays, we recorded the population
activity in two experimental conditions. In the sponta-
neous activity condition, population activity was meas-
ured when the two eyes were occluded. In the natural
image stimulation condition, one eye was opened and we
presented a video sequence obtained by sampling different
movie clips and the evoked spike trains from the
neuronal population were recorded (Figure 8b). A total

Figure 8. Experimental recordings in primary visual cortex. (a) Insertion sequence of a multi-electrode array into primary visual cortex
(Nauhaus & Ringach, 2007). (b) Natural image sequences, sampled from commercial movies, were used to stimulate all receptive fields
of neurons isolated by the array. In the spontaneous condition, activity was recorded while both eyes were occluded.
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of 20 to 30 minutes of data were collected in both
conditions. These data were split into 10-second segments
and spike trains binned as described in Methods. We
asked what would be the distribution of the “topological
signatures” of the data segments in both conditions.
Figure 9a illustrates the different topological signatures

observed in 10 s segments of our data labeled by the first
three Betti numbers (b0, b1, b2). On top of each triplet of
Betti numbers an object consistent with each signature is
shown. The distributions of topological signatures for both
experimental conditions are shown in the histograms of
Figure 9b, where the x-axis represents the same ordering

of signatures as depicted in Figure 9a. The left column
represents distributions for the spontaneous condition,
while the right column represents the distributions for the
natural image stimulation condition. Each row represents
a different “threshold” for the length of the interval of the
signature (in the barcode) as a fraction of the covering
radius of the data. Larger thresholds represent instances
where the signature was “long-lived” and likely to
represent a salient feature of the data. Nevertheless, all
the topological features shown are statistically different
from noise, as Monte Carlo simulations using shuffled
data show that the probability of obtaining segments of b1

Figure 9. Estimation of topological structure in driven and spontaneous conditions. (a) Ordering of topological signatures observed in our
experiments. Each triplet (b0, b1, b2) is shown along an illustration of objects consistent with these signature. (b) Distribution of topological
signatures in the spontaneous and natural image stimulation conditions pooled across the three experiments performed. Each row
correspond to signatures with a minimum interval length (denoted as the threshold) expressed as a fraction of the covering radius of the
data cloud (see Appendix A for the definition of the covering radius).
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or b2 longer than 0.3 by chance (which is the smallest
threshold used) was less than 0.005.
We find that at high threshold values there are two main

signatures that dominate: a circle with a signature of
(1,1,0) and a sphere with a signature of (1,0,1). This holds
for both experimental conditions. Thus, population activ-
ity patterns in both spontaneous and natural image
stimulation have similar topological distributions. How-
ever, the relative frequencies of observation of these
signatures are different, as the likelihood of observing the
signature of a circle is higher with natural image
stimulation rather than in the spontaneous condition. At
a lower threshold of 0.3, we observe a more diverse
distribution of topological signatures for the spontaneous
activity, while the distribution of driven activity remains
dominated by the signatures of a circle and a sphere
(Figure 9b, bottom panels).

Conclusions

We have discussed how computational topology can
help address basic questions about the encoding of
information by neuronal populations. The result of the
analysis is a topological characterization of the patterns of
activity, which provides qualitative information about its
structure, such as the number of clusters (connected
components) and holes of various dimensions. A key
concept we used, originating in the work of Edelsbrunner
and colleagues (Edelsbrunner, 1998; Edelsbrunner,
Letscher, & Zomorodian, 2000), was that of “persistent
homology,” where “holes” of different dimensions are
tracked as the spatial scale of analysis changes. Structures
that are present across a substantial range of the
persistence parameter are likely to be real features of
the data. These ideas have previously been applied with
success in other domains, such in the analysis of natural
images (Carlsson, Ishkhanov, DaSilva, & Zomordian,
2008), range images (Adams & Carlsson, 2007), sensor
networks (DaSilva & Ghrist, 2007), and the analysis of
chaotic signals (Gameiro, Mischaikow, & Kalies, 2004).
Here we applied computational topology, for the first
time, to the analysis of neuronal population activity in
macaque V1.
Through the use of computer simulations we demon-

strated that the method works as expected, recovering the
underlying structure of the data in artificial data sets
where the topology of the data cloud was under our
control. These simulations were done incorporating the
variability one would expect from real neuronal data. This
was achieved by using Poisson distributed spike counts
with mean firing rates, population sizes and record
lengths, comparable to those in the actual experiments.
We then explored the structure of population activity
when primary visual cortex was spontaneously active and

when it was driven by natural image sequences. It was
found that that the high-dimensional structures of the data
were similar in both cases, consistent with prior results
suggesting that natural stimulation modulates ongoing
activity only weakly (Arieli, Shoham, Hildesheim, &
Grinvald, 1995; Fiser et al., 2004; Grinvald, Arieli,
Tsodyks, & Kenet, 2003; Tsodyks et al., 1999).
Our results go beyond prior investigations by providing

the first rigorous study of the topological structure of
population activity. We showed that both the data for
spontaneous and driven conditions have similar topolog-
ical structures, with the signatures of the circle and the
sphere dominating the results.
A natural question is how a spherical structure could

emerge from what is known about the organization of
primary visual cortex. One possibility is that these results
from two known facts: (a) the tiling of primary visual
cortex by maps of preferred orientation and spatial
frequency (Blasdel & Salama, 1986; Grinvald, Lieke,
Frostig, Gilbert, & Wiesel, 1986; Issa, Trepel, & Stryker,
2000) and (b) the tendency for extreme spatial frequencies
to align with orientation pinwheels (Issa et al., 2000; but
see Sirovich & Uglesich, 2004) (Figure 10a).
In addition to these experimental observations, we

further assume that when we restrict our view to a single
hypercolumn (Figure 10a), neural activity is restricted to a
small region of the cortex (Figure 10a, white transparent
disk). If the center of this activity profile moves around on
the cortical surface, either spontaneously or driven by
visual input, the resulting population activity would be
equivalent to that of sphere (Figure 10b). Here, extreme

Figure 10. A possible origin of the spherical topological structure
in visual cortex. (a) Cartoon organization of orientation and spatial
frequency maps in V1. An orientation map tiling V1 is shown
along the locations of extremes spatial frequency tuning. Extreme
spatial frequency selectivity (solid circles indicates high spatial
frequency preference; dashed circles represents low spatial
frequency preference) tends to overlap with orientation pinwheels.
The white transparent disk indicates a localized region of activity
in this hypercolumn. (b) A the activity profile shifts to different
locations on the cortex the resulting topological structure of the
population response is equivalent to that of a sphere, where
extreme spatial frequencies are mapped to the poles and
orientation is coded by the azimuth (Bressloff & Cowan, 2003).
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spatial frequencies are mapped to the poles and orientation
is coded by the azimuth as a result of the spatial relation-
ship between the two maps (Bressloff & Cowan, 2003).
The fact that under natural image stimulation there is a

higher tendency for a circular signature may be due to the
fact that in short movie segments (10 s long in our
analyses) there could be one dominant spatial frequency
that effectively restricts the cortical state to travel along
one of the circle at a fixed elevation. A possible test of this
idea is to analyze both the structure of the actual image
sequences (Carlsson et al., 2008) and the structure of the
cortical responses and check if there is any correlation
between the topological signatures across independent
trials.
Our findings are consistent with previous voltage-

sensitive dye imaging data (Kenet et al., 2003) and, in
fact, may offer an explanation for why 80% of the time
the cortical state is uncorrelated with the orientation
maps. If the proposed spherical model is correct, and the
cortical state wandered out of the equator near the poles,
one may expect the activity to be uncorrelated with the
orientation states lying near the equator. An experimental
prediction from this model is that if one were to measure
orientation and spatial frequency maps, when activity is
uncorrelated with the orientation maps it must be
correlated with the spatial frequency maps (and vice
versa). This is readily testable using the methods of Kenet
et al. (2003).
At first sight there may appear to be an inconsistency

between our results and prior studies in that spike-
triggered correlation coefficients in the data of Tsodyks
et al. (1999) are Gaussian shaped, while a spherical
encoding predicts a uniform distribution (Goldberg et al.,
2004). However, we note that we only studied the
topological structure of the activity; our results should
not be interpreted as implying that the manifold is a
sphere in the metric sense.
One limitation of our study is that the data originates

mostly from complex cells in the superficial layers. Some
of the structure that may relate to spatial-phase selectivity
may have gone undetected. It is possible that larger
population sizes that included both simple and complex
cells may reveal structures more complex than a sphere (a
set of gratings with fixed orientation and varying spatial
phase generate a Klein bottle; Swindale, 1996; Tanaka,
1995). We are planning a more detailed exploration of
these issues using polytrode measurements (Blanche &
Swindale, 2006) and two-photon imaging of calcium
signals in V1 (Ohki, Chung, Ch’ng, Kara, & Reid, 2005;
Ohki et al., 2006).
This study described our first attempt at using topo-

logical analysis in the study of brain function. We think
the method shows promise and that there may be other
areas where the topological analysis of neural activity can
help guide further research. First, the technique can be
used to test specific hypotheses, such as “is the activity
consistent with a single loop?,” which is, for example, the

key question about the data of Kenet et al. (2003). Second,
it provides a rigorous tool to study the phenomenon of
cortical “songs,” where repeated patterns of activity have
been interpreted as activity attractors (Cossart, Aronov, &
Yuste, 2003; Deneve, Latham, & Pouget, 2001; Ikegaya
et al., 2004; Latham & Nirenberg, 2004; Tsodyks, 1999).
The statistical analysis of these recurring patterns is a
delicate matter, and it has been suggested that the patterns
may not be present at all (Mokeichev et al., 2007; Oram,
Wiener, Lestienne, & Richmond, 1999; Richmond, Oram,
& Wiener, 1999; Wiener & Richmond, 2003). The
presence of distinct stable fixed points, or line attractors,
is something that could be tested with our methods as
well, as they would show up as different connected
components in the analysis. Third, topological analysis
may be appropriate to explore the basic structure of
population activity in situations where we have no prior
information, or specific hypotheses, about the structure of
the stimulus or the encoding. The encoding of object
shapes is a good example (DiCarlo & Cox, 2007;
Edelman, 1998; Feldman & Richards, 1998; Kayaert,
Biederman, Op de Beeck, & Vogels, 2005; Kourtzi &
DiCarlo, 2006; Tanaka, Saito, Fukada, & Moriya, 1991).
Fourth, understanding the topological structure of population
activity may help in the design of better decoding methods
for use in brain-machine interfaces (Andersen, Musallam, &
Pesaran, 2004; Donoghue, 2002; Jazayeri & Movshon,
2006; Nicolelis, 2003; Nicolelis & Chapin, 2002; Ohnishi,
Weir, & Kuiken, 2007; Santhanam, Ryu, Yu, Afshar, &
Shenoy, 2006; Serruya, Hatsopoulos, Fellows, Paninski,
& Donoghue, 2003; Shoham et al., 2005). For example, if
one were to know that the activity of a population in a
high-dimensional space is equivalent to that of a circle, one
can collapse the entire activity to single number (such as
the intrinsic distance from a reference data point).
In summary, we have shown that it is possible to apply

topological methods in the study of neural activity and
learn some new aspects about the structure of the data.
More experience with the method is needed, but we
expect topological techniques to have a broad impact in
the analysis of neural activity across different systems.

Appendix A

Technical description of the method

In this section, we present a technical overview of
homology as used in our procedures. For an intensive
treatment, we refer the reader to the excellent text of
Hatcher (Hatcher, 2002). Homology is an algebraic
procedure for counting holes in topological spaces. There
are different variants of homology: we use simplicial
homology with Z2 (binary, 0 or 1) coefficients. This is the
reason the Betti sequences for the torus and the Klein
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bottle are the same in our calculations (the two objects can
be differentiated if the homology is computed over a
different field). Given a set of points V, a k-simplex is an
unordered subset {v0, v1, I, vk} where vi Z V and vi m vj
for all i m j. The faces of this k-simplex consist of all
(k j 1)-simplices of the form {v0, I, vij1, vi+1, I, vk}
for some 0 e i e k.
Geometrically, the k-simplex can be described as

follows: given k + 1 points in Rm (m Q k), the k-simplex
is a convex body bounded by the union of (k + 1) linear
subspaces of Rm defined by all possible collections of
k points (chosen out of k + 1 points). A simplicial
complex is a collection of simplices which is closed with
respect to inclusion of faces. Triangulated surfaces form
a concrete example, where the vertices of the triangu-
lation correspond to V. The orderings of the vertices
correspond to an orientation. Any abstract simplicial
complex on a (finite) set of points V has a geometric
realization in some Rn. Let X denote a simplicial complex.
Roughly speaking, the homology of X, denoted H*(X), is a
sequence of vector spaces {Hk(X): k = 0, 1, 2, 3I}, where
Hk(X) is called the k-dimensional homology of X. The
dimension of Hk(X) is the kth Betti number of X, bk(X),
which is a measurement of the number of different holes
in the space X that can be sensed by using sub-complexes
of dimension k.
For example, the dimension of H0(X) is equal to the

number of connected components of X. These are the
types of features that can be detected by using points and
edges. With this construction one is answering the
question: are two points connected by a sequence of
edges or not? The simplest basis for H0(X) consists of a
choice of vertices in X, one in each path-component of X.
Likewise, the simplest basis for H1(X) consists of loops in
X, each of which surrounds a hole in X. For example, if X
is a graph, then the space H1(X) encodes the number and
types of cycles in the graph, this space has the structure of
a vector space.
Let X denote a simplicial complex. Define for each k Q 0,

the vector space Ck(X) to be the vector space whose
basis is the set of oriented k-simplices of X; that is, a
k-simplex {v0, v1, I, vk} together with an order type
denoted [v0, v1, I, vk] where a change in orientation
corresponds to a change in the sign of the coefficient:
[v0, I, vi, I, vj, I, vk] = j[v0, I, vj, I, vi, I, vk] if an
odd permutation is used.
For k larger than the dimension of X, we set Ck(X) = 0.

The boundary map is defined to be the linear trans-
formation ¯:Ck(X) Y Ckj1(X), k Q 1, producing the
sequence

IY¯ Ckþ1 Y
¯ Ck Y

¯ Ckj1IY¯ C1 Y
¯ C0: ðA1Þ

Consider the following two subspaces of Ck: the
cycles (those sub-complexes without boundary) and the

boundaries (those sub-complexes which are themselves
boundaries) formally defined as:

k<cycles : ZkðXÞ ¼ kerð¯ : Ck YCkj1Þ
k<boundaries : BkðXÞ ¼ imð¯ : Ckþ1 YCkÞ:

ðA2Þ

A simple lemma demonstrates that ¯ - ¯ = 0; that is, the
boundary of a chain has empty boundary. It follows that
Bk is a subspace of Zk. This has great implications. The
k-cycles in X are the basic objects which count the
presence of a “hole of dimension k” in X. But, certainly,
many of the k-cycles in X are measuring the same hole;
still other cycles do not really detect a hole at allVthey
bound a sub-complex of dimension k + 1 in X. We say that
two cycles J and ) in Zk are homologous if their difference
is a boundary:

½J� ¼ ½)� 6 J j )ZBkðXÞ: ðA3Þ

The k-dimensional homology of X, denoted Hk(X) is the
quotient vector space

Hk Xð Þ :¼ ZkðXÞ
BkðXÞ : ðA4Þ

Specifically, an element of Hk(X) is an equivalence class
of homologous k-cycles. This inherits the structure of a
vector space in the natural way [J] + [)] = [J + )] and
c[J] = [cJ] for c Z Z2.
A map f :X Y Y is a homotopy equivalence if there is a

map g:Y Y X so that f - g is homotopic to the identity map
on Y and g - f is homotopic to the identity map on X.
This notion is a weakening of the notion of homeo-
morphism, which requires the existence of a continuous
map g so that f - g and g - f are equal to the corresponding
identity maps. The less restrictive notion of homotopy
equivalence is useful in understanding relationships
between complicated spaces and spaces with simple
descriptions. We say that two spaces X and Y are
homotopy equivalent or that have the same homotopy type
if there is a homotopy equivalence from X to Y. This is
denoted by X È Y.
Using arguments based on barycentric subdivision, one

may show that the homology H*(X) is a topological
invariant of X: it is indeed an invariant of homotopy type.
Readers familiar with the Euler characteristic of a
triangulated surface will not find it odd that intelligent
counting of simplicies yields an invariant. For a simple
example, the reader is encouraged to contemplate the
“physical” meaning of H1(X). Elements of H1(X) are
equivalence classes of (finite collections of) oriented
cycles in the 1-skeleton of X, the equivalence relation
being determined by the 2-skeleton of X.
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Induced homomorphisms

Is it often remarked that homology is functorial, by
which it is meant that things behave the way they ought
to. A simple example of this, which is crucial to our
applications, arises as follows. Consider two simplicial
complexes X and XV. Let f :X Y XV be a continuous
simplicial map: f takes each k-simplex of X to a kV-simplex
of XVwhere kV e k. Then, the map f induces a linear
transformation f#:Ck(X) Y Ck(XV). It is a simple lemma to
show that f# takes cycles to cycles and boundaries to
boundaries; hence, there is a well-defined linear trans-
formation on the quotient spaces

f* : HkðXÞYHkðXVÞ; f*ð½J�Þ ¼ ½ f ðJÞ�: ðA5Þ

This is called the induced homomorphism of f on H*.
Functoriality means that (1) if f :X Y Y is continuous then
f :Hk(X) Y Hk(Y) is a group homomorphism; and (2) the
composition of two maps g - f induces the composition of
the linear transformations: (g - f )* = (g* - f*).

Building simplicial complexes from the data

How is a simplicial complex built from the data? The
basic idea is to take a finite set of points X with distance
function d, together with a parameter (, and construct
from it some simplicial complex, for example the Rips
complex, denoted R((X). This complex will have X as its
vertex set, and a collection {x0, x1, I, xk} Î X will span
a k-simplex in R((X) if and only if d(xi, xj) e ( for all 0 e i,
j e k, where d denotes the metric (distance) which is
chosen depending on the problem at hand.
The construction of R((X) may be computationally

intractable for very large data sets, as it requires the
calculation of all pairwise distances between points in the
set. Another possible construction is the Witness complex.
Given a finite set of points X equipped with a distance
function d, a set of points L Î X, the landmark set, and
( Q 0, we say that a point x Z X is an (-witness for a k +
1-tuple {l0, l1, I, lk} of points in L if maxid(x, li) e ( + mx,
where mx denotes the k + 1 smallest value of d(x, l) as
l varies over all of L.
We next associate a simplicial complex W((X, L) to X,

L and (, by letting the vertex set of W((X, L) be L and
declaring that a collection {l0, l1, I, lk} spans a k-simplex
in W((X, L) if and only if there is an (-witness for the
collection {l0, l1, I, lk} and for all its faces.
We note that if ( e (V, there is an evident inclusion

W((X, L) Î W(V(X, L). Consequently, we have an
increasing family of simplicial complexes, parameterized
by the real line, just as we did for the Rips complexes. In
practice, the landmark set is built either by uniform
random sampling over X or by the max–min procedure:
one first randomly picks a point l1 from X. Then, the

second point l2 is chosen so as to maximize d(l1, l2).
Subsequently, points are chosen to maximize the distance
to the set of points already chosen. Earlier work has
shown that this much smaller complex accurately repre-
sents topology in simple cases, and we regard it as a
computationally tractable proxy for the Rips complex
(Carlsson & DeSilva, 2004).

Persistent homology: Barcodes

It is clear from our discussion that ( establishes the
“spatial scale” of analysis. Assume that X was sampled
from an underlying space X. When ( is very small, the
result will be a discrete set of points; when ( is large, the
result will be a single simplex of dimension #X j 1.
However, there is typically a middle range of values of (
where R((X) has homology isomorphic to that of the
original space and therefore has Betti numbers equal to
those of X. Thus, one of the key concepts below is that the
analysis will have to be done for a range of values, from
low to high, and investigate those scales where the
topological structure remains invariant.
When the space X is a Riemannian manifold, for

example, one can explicitly estimate a range of values of
for which this is the case (Niyogi, Smale, & Weinberger,
2006). In our situation, we only have the finite sample and
no a priori information about the underlying space;
therefore, obtaining such estimates is not practical.
Edelsbrunner and colleagues (2000), however, made the
following observation. Given ( e (V there is a natural
inclusion of simplicial complexes R((X) Î R(V(X), and
because of the functoriality property discussed above, one
obtains a linear transformation Hk(R((X)) Y Hk(R(V(X))
for any k. What Edelsbrunner et al. discovered was that in
order to study the homology of a given space using a point
cloud sampled from it, one should keep track of the entire
system of vector spaces Hk(R((X)) along with all the linear
transformations described above. Such a system is called a
persistence vector space. Importantly, it was shown that
persistence vector spaces admit a classification analogous
to the classification result for finite dimensional vector
spaces (Zomorodian & Carlsson, 2004), which asserts that
two vector spaces of the same dimension are isomorphic.
In the case of persistence vector spaces, it turns out that
attached to each persistence vector space, there is an
invariant called a barcode which is just a finite collection
of intervals (perhaps infinite to the right), and that any two
persistence vector spaces with the same barcodes are
isomorphic. With computational efficiency considerations
in mind, one could opt to compute barcodes using the
Witness complex construction.
We point out that even the witness complex can become

intractable if ( is permitted to go to infinity. This is
because for sufficiently large ( we will construct the full
complex with the given number of landmark points. If the
set of landmarks is large, this may become intractable as
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well. For this reason, we introduce a number R0 associated
with a choice of landmark points L, which is the covering
radius of the set L, defined by R0: = maxxZXminlZLd(x, l).
In practice, we use this as an upper bound for the
persistence parameter and express lengths of persistence
intervals as fractions of R0. When we have data which are
the result of independent repeats of the same experiment,
we explore the resulting topological objects obtained by
plotting the relative frequency of observation for different
topological signatures (sequences of Betti numbers) for
different lengths of the persistence interval (which we
referred to as the “threshold” in the body of the article).
Finally, in analyzing both simulated and experimental

data we used PLEX, a collection of Matlab functions for
computational topology that implements the concepts
described above. It is freely available from http://math.
stanford.edu/comptop/programs/.
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