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Abstract. For the automated analysis of cortical morphometry, it is crit-
ical to develop robust descriptions of the position of anatomical structures
on the convoluted cortex. Using the eigenfunction of the Laplace-Beltrami
operator, we propose in this paper a novel feature space to characterize the
cortical geometry. Derived from intrinsic geometry, this feature space is in-
variant to scale and pose variations, anatomically meaningful, and robust
across population. A learning-based sulci detection algorithm is developed
in this feature space to demonstrate its application in cortical shape anal-
ysis. Automated sulci detection results with 10 training and 15 testing
surfaces are presented.

1 Introduction

The analysis and registration of cortex morphometry is an important area in
human brain mapping and has produced valuable findings for the modeling of
both normal and pathological brains[1]. With the increasing availability of brain
scans from large scale studies[2], manual labeling becomes infeasible and it is thus
critical to automate the cortical shape analysis process and robustly resolve its
complicated and highly variable convolution pattern. In this paper, we propose
a novel feature space derived from the eigenfunction of the Laplace-Beltrami
operator to study the cortical surface. This feature space provides an intrinsic
and anatomically interesting characterization of locations on the cortical surface
and leads to compact modeling of anatomical landmarks invariant to scale and
natural pose differences.

One main goal of cortical shape analysis is the automatic labeling of the
major sulci that can serve as the landmarks for cortical normalization[1,3]. Var-
ious learning-based approaches have been developed to incorporate priors from
manual labeling[4,5,6,7,8]. The features used in previous work, however, rely on
coordinates in canonical spaces such as the Euclidean space of a brain atlas or
the unit sphere to model the position of anatomical landmarks on the cortex,
which is not intrinsic and can be sensitive to the image registration results.
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Fig. 1. (a) M. (b) ˜M. (c) Level contours of f1 and the surface patches used to define
F2 and F3. (d) Medial(blue) and lateral(red) points of Dj .

This is especially problematic for pathological brains as they can exhibit large
deviations from standard atlases. To overcome this limitation, we propose to
characterize the relative locations of cortical landmarks with an intrinsic feature
space that has the nice property of being invariant to pose and scale variations.
This feature space is computed using the eigenfunction of the Laplace-Beltrami
operator[9,10,11,12] of the cortex and a series of surface patches to describe in-
trinsically the anterior/posterior, superior/inferior, and medial/lateral profile of
the cortex. A sulci detection algorithm in the feature space is also developed to
demonstrate the application of this feature space in cortical shape analysis.

The rest of the paper is organized as follows. In section 2, we propose the
Laplace-Beltrami feature space and develop the algorithm for its numerical com-
putation. In section 3, we develop a learning-based sulci detection algorithm in
the feature space to demonstrate its value in analyzing cortical anatomy. Pre-
liminary experimental results are presented in section 4. Finally conclusions are
made in section 5.

2 Laplace-Beltrami Feature Space of Cortical Surfaces

For general data analysis, a subset of the Laplacian eigenfunctions were used
to form a feature space [13]. To study medical shapes, however, this is not suf-
ficient because it does not take into account the anatomical knowledge of the
underlying structure. For elongated structures such as hippocampus, the sec-
ond eigenfunction of the Laplace-Beltrami operator was used to detect stable
anatomical landmarks [14]. In this section, we generalize this approach to corti-
cal surfaces and define a Laplace-Beltrami(LB) feature space F = (F1,F2,F3),
where Fi : M → R(i = 1, 2, 3) and M is a cortical surface, to capture the
anatomical characteristics of cortex morphometry. We assume all brains are in
the neurological orientation to remove ambiguity in the sign of eigenfunctions.

Compared with simple shapes such as hippocampus, the cortical surface is a
much more complicated structure. In particular, the highly variable convolution
pattern makes the extraction of stable features a challenging problem. To tackle
this difficulty, we follow the multi-scale strategy. Given a cortical surface M, we
construct its feature space using a surface ˜M that represents M at a coarser
scale. For numerical computation, we represent both M = (V , T ) and ˜M =
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(˜V , T ) as triangular meshes, where V and ˜V are the set of vertices and T is
the set of triangles. In this work, the surface ˜M is obtained by applying the
Laplacian smoothing to the original surface M, thus the vertices in ˜V have
one-to-one correspondences to vertices in V . As shown in Fig. 1(a) and (b), the
smoothing process filters out the fine details in the convolution pattern and keeps
geometric structures at the coarser scale shared across population, thus making
the smoothed surface suitable to derive intrinsic location characterizations that
are stable across population. Using the correspondences between ˜V and V , we
can then compare detailed cortical features defined on the vertices of M in
the common feature space F and perform analysis tasks such as sulci and gyri
labeling.

For the surface ˜M, the eigenfunctions of its Laplace-Beltrami operator Δ
˜M

are defined as:

Δ
˜Mf = −λf (1)

The eigenvalues of Δ
˜M can be ordered according to their magnitude as 0 = λ0 ≤

λ1 ≤ λ2 ≤ · · · . The corresponding eigenfunction of λi is denoted as fi : ˜M → R.
By using the weak form of (1) and the finite element method, we can compute
the eigenfunctions by solving a generalized matrix eigenvalue problem:

Qf = λUf (2)

where Q and U are matrices derived with the finite element method.
The first feature function F1 is defined using the Reeb graph [15] of the second

eigenfunction f1, which minimizes the smoothness measure
∫

˜M ||∇f ||d ˜M and
can be viewed as the smoothest non-constant projection from ˜M to the real line
R. As shown in Fig. 1(c), the nodes of the Reeb graph are the level contours of
the eigenfunction. Because the eigenfunction is generally a Moss function [16],
the Reeb graph of f1 has a tree structure. Small branches in the Reeb graph are
pruned according to the length of the associated level contour such that the final
graph has a chain structure. The level contours of the Reeb graph are denoted
as Ci(i = 0, · · · , N) with their order determined by the corresponding value of
the eigenfunction f1. Numerically we represent each contour as a polyline of
K points Ci = [Ci,1, Ci,2,, · · · , Ci,K ]. The linear interpolation relation between
these points and the vertices of ˜M can be expressed as the following equation:

C = A˜V (3)

where C = [C0, C1, · · · , CN ]T and A is the matrix representing the linear in-
terpolation operation. To quantitatively describe the anterior/posterior distri-
bution of the cortical surface, we define F1 on the level contours as F1(Ci,k) =
−1 + 2 ∗ i/N . To extend F1 from the level contours to the vertices of the entire
mesh, we solve the following regularized linear inverse problem:

||F1(C) − AF1(˜V)||2 + βF1(˜V)
T
QF1(˜V) (4)
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(a) F1. (b) F2. (c) F3.

Fig. 2. Feature functions plotted on ˜M

where F1(C) and F1(˜V) are vectors of the values of F1 on the level contours and
the vertices of the mesh ˜M, respectively, and the matrix Q is the same as in (2).

The regularization term F1(˜V)
T
QF1(˜V) encourages smoothness of the feature

function. By solving this least square problem, we obtain F1(˜V) as

F1(˜V) = (AT A + βQ)−1ATF1(C). (5)

To define the second feature function F2, we first compute a surface patch
approximating the minimal surface of each level contour Ci as proposed in [14].
As shown in Fig. 1(c), this surface patch smoothly interpolates the interior of
the contour. We use the eigenfunction of each surface patch to define F2 and
characterize the superior/inferior profile of cortical surfaces. Let gi

1 denote the
second eigenfunction of the Laplace-Beltrami operator of the i-th surface patch.
We then compute the Reeb graph of gi

1 by sampling it at N + 1 level contours
Dj(j = 0, · · · , N) and assign a value 1− 2Li(N−j)

NLmax
to Dj to describe its superior-

to-inferior position on the surface, where Li is the length of Ci and Lmax is
the maximal length of all level contours. The value of F2 on the points Ci,k is
defined using linear interpolation from the values of neighboring level contours
of gi

1. Following the same approach of computing F1, we can extend the second
feature function to the vertices of the entire mesh:

F2(˜V) = (AT A + βQ)−1ATF2(C) (6)

where F2(C) and F2(˜V) are the vectors of values of F2 on the level contours and
the vertices, respectively.

We use the same eigenfunction gi
1 of the surface patches to define the third

feature function F3 to characterize the medial/lateral distribution of the cortical
surface. Using the assumption that the cortical surface is in the neurological
orientation, we denote the two end points of the level contour Dj as the medial
and lateral point of Dj by comparing the magnitude of their x-coordinates, which
are plotted as the blue and red dots in Fig. 1(d). For the medial point of Dj ,
we assign a value (|2j−N |−N)Li

NLmax
. For the lateral point of Dj , we assign a value

(N−|2j−N |)Li

NLmax
. The same interpolation procedure of computing F2 is then applied

to extend these values to the entire mesh and obtain the feature function F3.
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As an illustration, we plot in Fig. 2(a), (b) and (c) the three feature functions
of the surface in Fig. 1(b) with the parameter β = 1, N = 100, K = 100. Using
the sign of F3, we can easily separate the medial and lateral side of the surface.
For each point on the medial or lateral side, the two functions (F1,F2) provide
an intrinsic description of its relative location on the cortex. With the only
assumption that the brain is in neurological orientation, these descriptions are
invariant to scale differences and natural pose variations.

3 Sulci Detection in the Feature Space

In this section, we demonstrate the application of the LB feature space in cortical
shape analysis by applying it to the automated detection of major sulci. To
illustrate the advantage of the LB feature space in describing the location on
cortical surfaces, we show in Fig. 3(a) two cortical surfaces in the Euclidean
space and their central and pre-central sulcus in Fig. 3(b). After we compute
the LB feature functions, we project the sulci of both surfaces into the common
space (F1,F2). From the result in Fig. 3(c), we can see the sulci are much better
aligned in the feature space than in the original space. This shows the invariance
of LB features and suggests their ability of building more compact sulcal models.

For automated sulci detection, we follow the learning-based approach in [8] by
first generating a sample space of candidate curves in the feature space and then
finding the most likely curve as the projection of the detected sulci in F . Due to
space limitation, we describe our method briefly in the following. To learn the
prior model of a sulcus in the feature space, we assume a training set of cortical
surfaces with manually labeled sulcal curves and compute the feature functions
for each surface to project the sulcus into the feature space. Using these projected
training curves, we estimate a density function p(−→x ,−→v ) with the Parzen window
method, where −→x represents a point of a curve in the feature space and −→v is the
tangent vector of the curve at the point −→x . For a curve in the feature space, we
can then compute its likelihood of being part of the major sulcus as the integral
of the density function on this curve divided by its length. Besides this local
model, we also apply the principal component analysis (PCA) [17] to the set of
projected training curves to capture their global characteristics.

There are four main steps in our sulci detection algorithm. Using the central
sulcus as an example, we illustrate the result generated from each step in Fig. 4.
Given a cortical surface M, we first construct the skeletal representation of the

(a) (b) (c)

Fig. 3. Sulci in the Euclidean and LB feature space
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(a) (b) (c) (d)

Fig. 4. (a) Hamilton-Jacobi skeletons of sulcal regions. (b) Skeletons in the LB feature
space. (c) The most likely path (red) in the LB feature space. (d) The detected central
sulcus on the original cortical surface.

folding pattern by computing the Hamilton-Jacobi skeleton of the sulcal regions
[18] as shown in Fig. 4(a). After that, we compute the feature space (F1,F2,F3).
For major sulci on the lateral surface, we then project all skeletal branches with
F3 > 0 onto the feature space (F1,F2). Similarly, skeletal branches with F3 < 0
will be processed for major sulci on the medial surface. We divide each skeletal
branch into curve segments of fixed length and compute their probability of
being on the major sulcus of interest using the density function p(−→x ,−→v ). Curve
segments with the probability greater than a threshold, which we set as 0.01 in
all our experiments, are then chosen as candidate segments on the major sulcus,
which we plot in blue in Fig. 4(b). In the third step, we follow the sample space
generation algorithm in [8] to construct a graph model from these curve segments
and generate a set of candidate curves via random walking on the graph model.
For each candidate curve, we compute its likelihood of being the major sulcus as
the product of the probability obtained from the density function and the PCA
model to account for both local and global information. The most likely path,
as shown in red in Fig. 4(c), is chosen as the projection of the detected sulcal
curve in the feature space. Finally we connect the skeletal segments of the most
likely path with curvature-weighted geodesics on the original surface M as the
automatically generated major sulcus shown in Fig. 4(d).

4 Experimental Results

In this section, we present preliminary experimental results on the detection of
two major sulci: the central and precentral sulcus using the LB feature space.
The data set is composed of 25 right hemispherical cortical surfaces of spherical
topology[19]. We manually labeled the two sulci on 10 of the 25 surfaces and use
them as the training data. The projection of these training curves in the feature
space is shown in the upper left of Fig. 5. From these training curves, we learn
the density function and PCA model. Using these prior models, we tested our
sulci detection algorithm on the other 15 cortical surfaces. The automatically
detected sulcal curves on these surfaces are plotted in Fig. 5.

From the results we can see that our method is able to successfully detect
the two major sulci on all testing surfaces. Even though the brains vary quite
significantly in terms of shape and orientation, our method is robust to such pose
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Fig. 5. Training data (upper left) and sulci detection results on the 15 testing surfaces
(red: central sulcus; blue: pre-central sulcus)

and geometric variations because it is designed in the space of intrinsic eigen-
features. In our future work, we will incorporate Markovian priors of neighboring
sulci in the feature space for the detection of multiple sulci and validate on larger
data sets of different populations.

5 Conclusion

In this paper, we proposed a novel approach of constructing feature spaces for
cortical shape analysis using the eigenfunction of the Laplace-Beltrami operator.
The LB feature space provides an intrinsic and anatomically meaningful way of
characterize locations on the cortical surfaces. We demonstrated its application
in automated sulci detection and preliminary experimental results have been
presented.
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