
A Surface-based Approach for Classification of 3D
Neuroanatomic Structures

Li Shen1, James Ford1, Fillia Makedon1, Andrew Saykin2

1Dartmouth Experimental Visualization Laboratory, Computer Science,
Dartmouth College, Hanover, NH 03755
{li,jford,makedon}@cs.dartmouth.edu

2Brain Imaging Laboratory, Psychiatry and Radiology,
Dartmouth Medical School, Lebanon, NH 03756

saykin@dartmouth.edu

Dartmouth Computer Science Technical Report TR2003-464

Abstract

We present a new framework for 3D surface object classification that combines a powerful
shape description method with suitable pattern classification techniques. Spherical harmonic
parameterization and normalization techniques are used to describe a surface shape and derive
a dual high dimensional landmark representation. A point distribution model is applied to re-
duce the dimensionality. Fisher’s linear discriminants and support vector machines are used
for classification. Several feature selection schemes are proposed for learning better classifiers.
After showing the effectiveness of this framework using simulated shape data, we apply it to
real hippocampal data in schizophrenia and perform extensive experimental studies by exam-
ining different combinations of techniques. We achieve best leave-one-out cross-validation
accuracies of 93% (whole set, N = 56) and 90% (right-handed males, N = 39), respec-
tively, which are competitive with the best results in previous studies using different tech-
niques on similar types of data. Furthermore, to help medical diagnosis in practice, we employ
a threshold-free receiver operating characteristic (ROC) approach as an alternative evaluation
of classification results as well as propose a new method for visualizing discriminative patterns.

Keywords: Shape analysis, surface parameterization, classification, feature selection, statisti-
cal pattern recognition, medical image analysis

1 Introduction

Object classification via shape analysis is an important and challenging problem in machine learn-
ing and medical image analysis. Classification involves examples from distinct classes. The aim is
to learn a classifier from a training set, or set of labeled examples representing different classes, and
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then use the classifier to predict the class of any new example. This paper focuses on classification
of 3D neuroanatomic structures using shape features in the brain imaging domain. The goal is to
identify shape abnormalities in a structure of interest that are associated with a particular condition
to aid diagnosis and treatment. To achieve this goal, we propose a new framework that combines a
powerful 3D surface modeling technique with a set of effective pattern classification, feature selec-
tion, evaluation and visualization techniques. The proposed framework can derive a shape-based
medical classifier that has clinical value. It can also be applied to 3D shape classification problems
in other domains such as computer vision, image processing and pattern recognition.

Shape-based classification consists of two major steps: (1) shape representation for extracting
shape parameters; and (2) pattern classification [11] for learning a classifier based on those param-
eters. Numerous 3D shape representation techniques have been proposed in the areas of computer
vision and medical image analysis, such as, landmark-based descriptors [2, 7], deformation fields
generated by mapping a segmented template image to individuals [10, 21], distance transforms
[1], medial axes [25, 32, 31], and parametric surfaces [1, 4, 30]. This paper focuses on parametric
surfaces using spherical harmonics. We propose a new framework of combining this represen-
tation with a set of effective pattern classification and processing techniques for classifying 3D
neuroanatomic structures. Our techniques are designed for simply connected 3D objects, a cate-
gory many brain structures belong to. We demonstrate these techniques using synthetic shape data
as well as real hippocampal data sets extracted from magnetic resonance (MR) images.

The hippocampus is a critical structure of the human limbic system, which is involved in learn-
ing and memory processing. Several shape classification studies have been conducted for dis-
covering hippocampal shape abnormality in the neuropsychiatric disease of schizophrenia, where
classification accuracies are all estimated using leave-one-out cross-validation. Csernansky et al.
[10] studied hippocampal morphometry using an image-based deformation representation, and
achieved 80% classification accuracy through principal component analysis (PCA) and a linear dis-
criminant. Golland, Timoner et al. [15, 16, 34] conducted amygdala-hippocampus complex studies
using distance transformation maps and displacement fields as shape descriptors, and achieved best
accuracies of 77% and 87%, respectively, using support vector machines (SVMs) [9]. We studied
hippocampal shape classification in [27] using a symmetric alignment model and binary images,
and achieved 96% accuracy using only the second principal component after PCA.

The above are all image-based or voxel-based approaches. We are more interested in surface-
based approaches, which have the following advantages. First, compared with image-based ap-
proaches, surface-based approaches can be applied in more general situations where a surface is
not embedded in an image but defined in another way such as segmented boundaries or triangula-
tions. Second, for a 3D volumetric object, its boundary or surface actually defines the shape, and
so surface-based representation may be more appropriate for shape study unless the appearance or
tissue inside the object is also the focus of interest. Third, some noisy steps like resampling in the
voxel-based analysis can be avoided.

The SPHARM description [4] is a parametric surface description using spherical harmonics as
basis functions. Spherical harmonics was originally used as a type of surface representation for
radial or stellar surfaces (r(θ, φ)) [1], and later extended to more general shapes by representing
a surface using three functions of θ and φ [4]. Now SPHARM is a powerful surface modeling
approach for arbitrarily shaped but simply-connected objects. It is suitable for surface comparison
and can deal with protrusions and intrusions. Gerig, Styner and colleagues have done numerous
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SPHARM studies for 3D medial shape (m-rep) modeling [32, 31], model-based segmentation [22],
and identifying statistical shape abnormalities of different neuroanatomic structures [12, 32]; see
[14] for a complete list. They have also done a hippocampal shape classification study [13] by using
SPHARM for calculating hippocampal asymmetry, combining it with volume, and achieving 87%
accuracy using SVM.

Our previous study [29] closely followed the SPHARM model and combined it with PCA and
Fisher’s linear discriminant (FLD) in a hippocampal shape classification study and achieved 77%
accuracy. This paper extends our previous work by integrating additional classification techniques
and feature selection approaches in order to obtain an improved classification. In addition, we study
a threshold-free receiver operating characteristic (ROC) approach [3, 18, 33] for better understand-
ing the behaviors of classification systems as well as propose a new method for visualization of
discriminative patterns. We also discuss the computational costs involved in the study.

The rest of the paper is organized as follows. Section 2 describes the surface description
approach using SPHARM expansion and point distribution model. Section 3 presents different
classifiers applied in the study. Section 4 considers feature selection approaches and performs
experimental studies. Section 5 examines further studies based on linear classifiers, including a
threshold-free ROC analysis and a new method for visualizing discriminative patterns. Section 6
discusses the computational costs involved in the study. Section 7 concludes the paper.

2 Surface-based representation

In this study, the test data used to demonstrate our techniques are hippocampus structures extracted
from magnetic resonance (MR) scans. There are 21 healthy controls and 35 schizophrenic patients
involved. The left and right hippocampi in each MR image are identified and segmented by manual
tracing in each acquisition slice using the BRAINS software package [20]. A 3D binary image is
reconstructed from each set of 2D hippocampus segmentation results, with isotropic voxel values
corresponding to whether each voxel is excluded or included. The surface of this 3D binary image
is composed of a mesh of square faces (see the first picture in Figure 1 for one example of such
surfaces). In this section, we present (1) how to describe such a surface using SPHARM param-
eterization; (2) how to normalize this SPHARM model into a common reference system so as to
establish surface correspondence across different subjects as well as extract only shape information
by excluding translation, rotation and scaling; (3) how to use the SPHARM model to create similar
synthetic shapes that will be used as test data sets to evaluate our classification approaches; and
(4) how to use a point distribution model (PDM) to obtain a more compact shape feature vector to
make classification feasible.

2.1 SPHARM shape description

We adopt the SPHARM expansion technique [4] to create a shape description for closed 3D sur-
faces. An input object surface is assumed to be defined by a square surface mesh converted from
an isotropic voxel representation (see the first picture in Figure 1 for a hippocampal surface).
Three steps are involved to obtain a SPHARM shape description: (1) surface parameterization, (2)
SPHARM expansion, and (3) SPHARM normalization.

3



Figure 1: The first picture shows a volumetric object surface. The second, third and fourth pictures
show its SPHARM reconstructions using coefficients up to degrees 1, 5 and 12, respectively.

Surface parameterization aims to create a continuous and uniform mapping from the ob-
ject surface to the surface of a unit sphere. The parameterization is formulated as a constrained
optimization problem with the goals of topology and area preservation and distortion minimiza-
tion. The result is a bijective mapping between each point v(θ, φ) on a surface and two spherical
coordinates θ and φ:

v(θ, φ) =







x(θ, φ)
y(θ, φ)
z(θ, φ)





 . (1)

The key idea in this step is to achieve a homogeneous distribution of parameter space so that the
surface correspondence across subjects can be obtained later on; see [4] for details.

SPHARM expansion expands the object surface into a complete set of SPHARM basis func-
tions Y m

l , where Y m
l denotes the spherical harmonic of degree l and order m. The spherical

harmonics [37] are defined as

Y m
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√
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√
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where P m
l (cos θ) are associated Legendre polynomials (with argument cos θ), and l and m are

integers with −l ≤ m ≤ l. The associated Legendre polynomial P m
l is defined by the differential

equation
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Figure 2: Normalized SPHARM reconstruction: left and right hippocampi from 21 healthy con-
trols and 35 schizophrenic patients.

The coefficients c
m
l up to a user-desired degree can be estimated by solving a set of linear equations

in a least squares fashion. The object surface can be reconstructed using these coefficients, and
using more coefficients leads to a more detailed reconstruction. See Figure 1 for an example.
Thus, a set of coefficients actually form an object surface description.

SPHARM normalization creates a shape descriptor (i.e., excluding translation, rotation, and
scaling) from a normalized set of SPHARM coefficients, which are comparable across objects. Ro-
tation invariance is achieved by aligning the degree 1 reconstruction, which is always an ellipsoid.
The parameter net on this ellipsoid is rotated to a canonical position such that the north pole is at
one end of the longest main axis, and the crossing point of the zero meridian and the equator is at
one end of the shortest main axis. In the object space, the ellipsoid is rotated to make its main axes
coincide with the coordinate axes, putting the shortest axis along x and longest along z. Scaling in-
variance can be achieved by dividing all the coefficients by a scaling factor f . In our experiments,
we choose f so that the object volume is normalized. Ignoring the degree 0 coefficient results in
translation invariance.

After the above steps, a set of canonical coordinates (i.e., normalized coefficients) can be ob-
tained to form a shape descriptor for each object surface. Figure 2 shows the normalized recon-
struction for our hippocampal data set using these shape descriptors. For simplicity, normalized
SPHARM coefficients are hereafter referred to as SPHARM coefficients.

2.2 SPHARM coefficients and synthetic data generation

SPHARM coefficients are complex numbers, whose real parts and imaginary parts we treat as
separate elements. A vector of all these elements forms a shape descriptor for a closed 3D surface.
These vectors are related to the same reference system and can be compared across individuals.
We assume a normal distribution for each vector element. Given a group of shapes, the mean and
standard deviation of each element can be estimated to form a shape model, which may provide
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Figure 3: Mean and standard deviation of sample SPHARM coefficients for right hippocampi: real
and imaginary parts of degree 4 coefficients are shown for the control group and the patient group.

Figure 4: Synthetic right hippocampi: the first and second rows show synthetic right hippocampi
generated based on the control model and the patient model, respectively.

some degree of understandings of a shape group. Figure 3 shows sample mean and standard
deviation results for 2 different hippocampus groups: right hippocampi of controls (RC) and right
ones of patients (RP).

The shape model described above can be used to create similar synthetic shapes. For example,
a synthetic hippocampus can be constructed if, for each vector element, we draw a random number
from its corresponding normal distribution with the estimated mean and standard deviation; see
Figure 4 for 28 synthetic hippocampi using the RC shape model and the other 28 using the RP
model, which look quite similar to real ones in Figure 2. Note that this is a very simplistic approach
to synthetic shape generation, where vector elements are assumed independent. However, it is an
effective one for our purpose: it can create two groups of shapes that have small and noisy group
difference to evaluate our classification approach.

In fact, the SPHARM representation allows for the development of more complicated shape
modeling techniques (e.g., Kelemen et al. [22]) which can be used for synthetic data generation or
even model-based segmentation.

2.3 Point distribution model

It is not easy to intuitively understand a SPHARM coefficient, since the coefficient is usually a
complex number and provides a measure of the spatial frequency constituents that compose the
object. However, the points of the sampled surface (called landmarks) can be considered as a dual
representation of the same object. This is a more intuitive descriptor, and so we choose to use this
representation in our study.
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Figure 5: Landmark sampling: nearly uniform sampling of spherical surfaces by icosahedron
subdivision (levels 0-3); and four sampled hippocampal surfaces (mesh vertices are landmarks).

Using a nearly uniform icosahedron subdivision of spherical surfaces [1], we obtain a dual
landmark representation from the coefficients via the linear mapping described in Eq. (4). Figure 5
shows the icosahedron subdivisions of levels 0-3, as well as several sampled hippocampal surfaces
using the sampling mesh of icosahedron subdivision level 3, where mesh vertices correspond to
surface landmarks. Thus, each shape is represented by a set of n landmarks (i.e., sampling points),
which are consistent from one shape to the next.

In the experiments, we use icosahedron subdivision level 3, and each object has n = 642
landmarks. The mean distance (± standard deviation) between two neighbouring landmarks is
about 2.06±0.86 original voxel units, where a voxel unit is 1 mm before SPHARM normalization.

Now the shape descriptor becomes a 3n element vector

x = (x1, ..., xn, y1, ..., yn, z1, ..., zn)T . (6)

Given a group of N shapes, the mean shape x̄ can be calculated using

x̄ =
1

N

N
∑

i=1

xi, (7)

where xi is the landmark shape descriptor of the i-th shape.
Clearly, we have many more dimensions than training objects. Principal component analy-

sis (PCA) [11] is applied to reduce dimensionality to make classification feasible. This involves
eigenanalysis of the covariance matrix Σ of the data as follows:

Σ =
1

N − 1

N
∑

i=1

(xi − x̄)(xi − x̄)T , (8)

ΣP = DP, (9)

where the columns of P hold eigenvectors, and the diagonal matrix D holds eigenvalues of Σ. The
eigenvectors in P can be ordered according to respective eigenvalues, which are proportional to
the variance explained by each eigenvector. The first few eigenvectors (with greatest eigenvalues)
often explain most of variance in the data. Now any shape x in the data can be obtained using

x = x̄ + Pb, (10)
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where b is a vector containing the components of x in basis P, which are called principal compo-
nents. Since eigenvectors are orthogonal, b can be obtained using

b = P
T (x − x̄). (11)

Given a dataset of m objects, the first m − 1 principal components are enough to capture all
the data variance. Thus, b becomes an m − 1 element vector, which can be thought of as a new
and more compact representation of the shape x in the new basis of the deformation modes (i.e.,
x − x̄ is the deformation between an individual shape x and the mean x̄). This model is a point
distribution model (PDM) [7, 22]. We apply PDM to each hippocampal data set to obtain a b

(referred to as a feature vector hereafter) for each shape.
This dimensionality reduction step can also be viewed as a form of feature extraction, where

the reduced representations are viewed as “features” of the orginals.

3 Classifiers

We examine several linear techniques for classifier learning, including Fisher’s linear discrimi-
nants and linear support vector machines. The input data taken by these techniques are feature
vectors of shapes described above. Linear techniques are simple and well-understood. Once they
succeed in real applications, the results can then be interpreted more easily than those derived from
complicated techniques.

3.1 Fisher’s linear discriminant

Fisher’s linear discriminant (FLD) is a multi-class technique for pattern classification. FLD projects
a training set (consisting of c classes) onto c − 1 dimensions such that the ratio of between-class
and within-class variability is maximized, which occurs when the FLD projection places different
classes into distinct and tight clumps [11].

This optimal projection Wopt is calculated as follows. Assume that we have a set of n d-
dimensional samples x1, ...,xn, ni in the subset Di labeled ωi, where n =

∑c
k=1 nk and i ∈

{1, ..., c}. Define the between-class scatter matrix SB and the within-class scatter matrix SW

as

SB =
c

∑

i=1

|Di|(mi − m)(mi − m)T , (12)

SW =
c

∑

i=1

∑

x∈Di

(x − mi)(x − mi)
T , (13)

where m is the mean of all samples and mi the mean of class ωi. If SW is nonsingular, the optimal
projection Wopt is chosen by

Wopt = argmax
W

|WT
SBW|

|WTSWW|
= [w1w2 . . .wm] (14)
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where {wi | i = 1, 2, . . . , m} is the set of generalized eigenvectors of SB and SW corresponding
to set of decreasing generalized eigenvalues {λi | i = 1, 2, . . . , m}, i.e.,

SBwi = λiSWwi. (15)

Note that an upper bound on m is c − 1; please see [11] for a detailed explanation.
In our case, we have only two classes, and so the above FLD basis Wopt becomes just a column

vector w. Once this w has been found, a new feature vector can be projected onto w to classify it.
The resulting scalar value can be compared to the projections of the training set on the same basis
w. In this one-dimensional FLD space, we choose four approaches to perform classification: (1)
FLD-BM, (2) FLD-1NN, (3) FLD-3NN, and (4) FLD-NM.

FLD-1NN and FLD-3NN are two k nearest neighbour (kNN) classifiers with k = 1 and
k = 3 respectively. A kNN classifier assigns a new object to the most common class in the k
nearest labelled training objects. FLD-NM is a nearest mean (NM) classifier, which assigns a new
object to the class having the nearest mean.

FLD-BM assumes a normal distribution N (µi, σ
2
i ) in the FLD space for each class ωi, where

its mean µi and variance σ2
i can be estimated from the training set. Using a Bayesian model (BM),

the certainty that a test subject could be explained by each class’s distribution can be calculated
based on the training set. That is, the conditional probability P (x ∈ Di | y) that a new object x

belongs to class ωi (i.e., the label of Di), conditioned on its FLD projection being y, can then be
calculated by the following equation:

P (x ∈ Di | y) =
p(y | x ∈ Di) ∗ P (x ∈ Di)

∑c
j=1 p(y | x ∈ Dj) ∗ P (x ∈ Dj)

=
p(y | y ∼ N (µi, σ

2
i )) ∗ P (x ∈ Di)

∑c
j=1 p(y | y ∼ N (µj, σ

2
j )) ∗ P (x ∈ Dj)

. (16)

In Eq. (16), p(y | x ∈ Di) is the state-conditional probability density function (pdf) for random
variable y conditioned on x belonging to class ωi, which is equivalent to pdf p(y | y ∼ N (µi, σ

2
i ))

based on our assumption of a normal distribution for y. The prior probability P (x ∈ Di) of x

belonging to class ωi are chosen as the fraction of the dataset belonging to ωi. FLD-BM assigns a
new object to the class corresponding to the largest posterior probability computed by Eq. (16). In
the case of equality, the new object joins the class having the closest mean.

3.2 Support vector machines

Support vector machines (SVMs) belong to a new generation learning system based on recent
advances in statistical learning theory [36]. We apply linear SVMs in our study for a comparison
with FLD-based techniques. Here we briefly describe how to train linear classifiers with SVMs.

Let {(x1, y1), (x2, y2), · · · , (xl, yl)}, where xi ∈ Rn and yi ∈ {−1, 1}, be a set of training
examples for a two-category classification problem. Define a hyperplane H(w, b) in Rn by

H(w, b) ≡ {x | wT
x + b = 0}, (17)

where x’s are points lying on the hyperplane, w is normal to the hyperplane, |b|/‖w‖ is the per-
pendicular distance from the hyperplane to the origin, and ‖ · ‖ is the Euclidean norm. Note that
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(wT
x + b)/‖w‖ gives the signed distance from a point x to the hyperplane H(w, b). Thus, in a

linear separable case, we can find a hyperplane H(w, b) such that

(wT
xi + b) ∗ yi ≥ 1, i = 1, · · · , l. (18)

Define the margin as the sum of the distances from the hyperplane to the closest positive and
negative exemplars. A linearly separable SVM aims to find the separating hyperplane with the
largest margin; the expectation is that the larger the margin, the better the generalization of the
classifier. For any given hyperplane satisfying the constraints in Eq. (18), the margin is 2/‖w‖.
Therefore the goal is to find the hyperplane which gives the maximum margin by minimizing
‖w‖2/2, subject to the constraints in Eq. (18).

The above scenario can be extended to a non-separable case by introducing non-negative slack
variables ξi that measures by how much each training example violates the constraint in Eq. (18).
The optimization problem is then transformed to minimizing

‖w‖2/2 + C(
∑

i

ξi) (19)

subject to constraints
(wT

xi + b) ∗ yi ≥ 1 − ξi, i = 1, · · · , l, (20)

where C is a user-specified parameter for adjusting the cost of the constraint violation, i.e., the
trade-off between maximizing the margin and minimizing the number of errors.

This optimization problem is solved by a quadratic programming approach using Lagrange
multipliers. Based on the resulting hyperplane H(w, b), a new example x can be classified by
calculating f(x) = sign(wT

x + b). SVM can also be extended to nonlinear classification via a
nonlinear mapping defined by kernel functions. SVMs have been receiving increasing attention and
been used successfully in many classification areas. We refer the readers to [5, 6, 9, 11, 18, 23, 36]
for more technical and implementation details.

To test the effectiveness of our framework as well as compare with FLD-based techniques, we
employ a publicly available SVM tool in our study. The tool we use is OSU SVM Classifier Matlab
Toolbox version 3.00 [23], the core part of which is based on LIBSVM v2.33 [6]. Only linear SVM
classifiers are tested in our experiments. We use SVM-Ct to denote a linear SVM classifier in
which the parameter C, for specifying the cost of the constraint violation, is set as t. SVM-C1,
SVM-C10, SVM-C100 are applied in our experiments, where C takes values of 1, 10 and 100
respectively.

4 Experimental studies

We conduct experimental studies on classification in this section. Classification is performed on
feature vectors after PCA using a leave-one-out cross-validation methodology [11]:

Each object is removed in turn as the test case, the remaining objects forms a training
set for classifier learning, the resulting classifier is tested on the removed object, and
the accuracy is estimated as the mean of these leave-one-out accuracies.
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Figure 6: Two classes of synthetic surfaces: the first row shows 14 surfaces in Class C1 (or Cuboid
Class), while the second shows 14 surfaces in Class C2 (or Cuboid-bump Class).

This work, unlike our previous work [29], uses PCA applied to all data in a single step, rather than
constructing a new basis for each leave-one-out trial based on individual training sets. This is a
simpler approach that should minimize representation errors.

In the classification, principal components are used as features, and different orderings of these
features are considered. The standard ordering of principal components is by the variance amounts
they explain. An alternative ordering of these components by statistical tests is also investigated in
the following section. In either case, varying numbers of features are examined.

To evaluate the effectiveness of our techniques, synthetic data are created and employed in the
experiments. After that, the techniques are applied to the real hippocampal data in schizophrenia
and the results are reported.

4.1 Feature selection

Additional features are theoretically never unhelpful. In theory having more features can only
improve or not change performance; however, in practice, each additional feature adds a parameter
to the model that needs to be estimated, and mis-estimations that result from the less informative
features can actually degrade performance. This trend of decreasing accuracy gains followed by
actual losses of accuracy from additional features is known as the “peaking effect” or “Hughes
phenomenon” [19]. Therefore, in summary, it is often helpful to select a subset of the most useful
features. In our study, features are principal components, and we feel that some components are
more useful than others for classification, but not necessarily matching the ordering of the variance
amounts they explain. The following is such an example.

Figure 6 shows two classes of 14 synthetic rectangular surfaces each, with bumps centered
on one face in the second class. Here we use the standard ordering of principal components
(i.e., by variance-accounted-for). We apply our FLD and SVM classifiers to this data, and the
cross-validation accuracies using the first i components are: < 60% for i = 1, 2; and 100% for
i = 3, . . . , 24. As shown in the left part of Figure 7, the third component alone supports perfect
classification, and thus should be considered more important than components that do not. Note
that the third eigenvector contains the weights to create the third component. These weights can be
backprojected onto the surface space and each landmark corresponds to a vector of 3 weights. The
weight vectors with the largest magnitude correspond to landmark locations with the most signif-
icant contribution to the component value. The right part in Figure 7 shows the contributions of
landmark locations to the third component using the color mapping onto the mean surface. From
this visualization, it is apparent that the third component is focused on the most significant surface
region for discriminating the synthetic classes.
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Figure 7: Left: third principal component of synthetic surfaces, which discriminates classes. Right:
mean surface with colors indicating the contributions of landmark locations to the third component,
where yellow/light color indicates more significant contributions while green/dark less.

To rank the effectiveness of features, we employ a simple two-sample t-test [24] on each feature
and obtain a p-value associated with the test statistic

T =
Ȳ1 − Ȳ2

√

s2
1/N1 + s2

2/N2

, (21)

where N1 and N2 are the sample sizes, Ȳ1 and Ȳ2 are the sample means, s2
1 and s2

2 are the sample
variances, and the samples are two sets of feature values in two respective classes. The p-value
indicates the probability that the observed value of T could be as large or larger by chance under
the null hypothesis that the means of Y1 and Y2 are the same. Thus, a lower p-value implies stronger
group difference statistically and corresponds to a more significant feature. We hypothesize that
more significant features can help more in classification. In the above example, the third principal
component corresponds to p < 10−15, while for all the other components p ≥ 0.17.

We investigate three feature selection schemes in our experiments. In each scheme, we select
the first n features according to a certain ordering of principal components, where varying values
of n are also considered. These orderings are as follows:

1. PCV: ordered by variance explained, decreasingly.

2. PCTa: ordered by p-value associated with t-test applied to all the objects, increasingly.

3. PCTt: ordered by p-value associated with t-test applied only to each leave-one-out training
set, increasingly, where different leave-one-out trials could have different PCTt orderings.

4.2 Experiments on synthetic data

We report our experimental results on two synthetic data sets using FLD-BM and SVM-C1 clas-
sifiers. The first data set consists of two classes of 14 synthetic rectangular surfaces each, with
bumps centered on one face in the second class. Figure 6 shows these surfaces. Although the
group shape difference is clear in this example, some variability also occurs within each group.

Figure 8(a) and Figure 8(b) show the results of applying FLD-BM and SVM-C1, respectively,
to this data set. Both figures give us the following observations. The 100% cross-validation accu-
racy is very consistent if we use more than two features according to PCV ordering. Using PCTa
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(a) FLD-BM on rectangular surfaces
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(b) SVM-C1 on rectangular surfaces

10 20 30 40 50
30

40

50

60

70

80

90

100

Shape feature number

P
er

ce
nt

 c
or

re
ct

PCV
PCTa 
PCTt

(c) FLD-BM on synthetic hippocampi
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(d) SVM-C1 on synthetic hippocampi

Figure 8: Sample classification results on simulated data sets using different feature selection
schemes. Rectangular surfaces and synthetic hippocampi are two simulated data sets. FLD-BM
and SVM-C1 are two classifiers. PCV, PCTa, PCTt are three feature selection schemes. On each
picture, the number of features used in the classification according to a certain ordering (PCV,
PCTa, or PCTt) is plotted on the X axis, the leave-one-out cross-validation accuracy is plotted on
the Y axis.
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or PCTt ordering can achieve the perfect accuracy using the minimum number of features; in this
case, only one feature is needed for a perfect classification. These results suggest that our tech-
niques can effectively detect the group difference in the presence of noisy intra-group variabilities.

The second simulated data set is formed by the synthetic hippocampi generated in Section 2.2:
Class C1 consists of 28 synthetic hippocampi based on the right control (RC) shape model, and
Class C2 contains 28 synthetic ones based on the right patient (RP) model. Please see Figure 4
for the visualization of both classes. Due to the minor difference between the RC and RP shape
models (e.g., the model difference displayed in Figure 3), these two classes of shapes have a small
and noisy group difference.

Figure 8(c) and Figure 8(d) show the experimental results of applying FLD-BM and SVM-
C1, respectively, to this second data set (i.e., synthetic hippocampi). Using PCTa and PCTt
feature selection orderings, excellent accuracies (≥ 95%) can be achieved using very few (e.g.,
5) features. Using the PCV ordering, similar accuracies can be achieved using more (e.g., 12)
features. There is a performance difference between FLD-BM and SVM-C1 using either PCV or
PCTt feature selection: adding too many features hurts FLD-BM but does not affect SVM-C1.
In terms of the best cases, all these techniques can achieve nearly perfect leave-one-out cross-
validation classification accuracies. Synthetic hippocampi generated from different groups have
small but systematic differences in terms of mean shape and coefficient variance (see Figures 3).
Our techniques seem to be able to capture these differences.

The above experiments show that our classification approach performs well at distinguishing
clear group differences as well as small and noisy group differences. In the following section,
we apply our technique to real hippocampal data to detect if there is any hidden group difference
which can potentially help medical diagnosis.

4.3 Experiments on real hippocampal data

In this section, we report our experimental results on real hippocampal data. In many clinical stud-
ies, the relatively unknown contributions of gender and handendess are controlled for by selecting
subjects based on only one particular value for these parameters, typically “male” and “right-
handed”. Accordingly, we also present results with the right-handed male subset of our subject
pool in order to facilitate comparisons with studies using these values as selection criteria.

We examine two groups of subjects: (1) Sall of 35 schizophrenics and 21 controls, and (2)
Srhm of 25 schizophrenics and 14 controls, all of whom are right-handed males from Sall. In each
group, left and right hippocampi are studied separately. Please refer to Figure 2 for a visualization
of these hippocampal shapes. We use S

Y
X to denote the set of Y (∈ {left, right}) hippocampi in SX ,

where X ∈ {all, rhm}. Thus, there are four hipocampal data sets: S
left
all , Sright

all , Sleft
rhm and S

right
rhm .

We have seven classifiers, three feature selection schemes and four data sets. Our experiments
include every combination, but due to space limitations we present only a few typical examples in
detail. Although Figure 9 shows only the experimental results of applying FLD-BM and SVM-C10
classifiers to S

left
all and S

right
rhm data sets, the following observations are true for all the experiments:

1. The PCTa results show a nearly perfect classification for each classifier in the best case;
however, in this case, feature selection introduces some bias, as test subjects are included in
the selection process. Nevertheless, it is interesting to see that a feature subset does exist that
supports nearly perfect classification.
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(a) FLD-BM on S left
all
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(b) SVM-C10 on S left
all
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(c) FLD-BM on Sright
rhm
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(d) SVM-C10 on Sright
rhm

Figure 9: Sample classification results on real data sets using different feature selection schemes.
Sleft

all is the set of left hippocampi in Sall. Sright
rhm is the set of right hippocampi in Srhm. FLD-BM

and SVM-C1 are two classifiers. PCV, PCTa, PCTt are three feature selection schemes. On each
picture, the number of features used in the classification according to a certain ordering (PCV,
PCTa, or PCTt) is plotted on the X axis, the leave-one-out cross-validation accuracy is plotted on
the Y axis.
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Sall Srhm

acc, fts Left Right Left Right
FLD-BM 93%, 19 79%, 2 82%, 16 82%, 17
FLD-1NN 89%, 17 79%, 11 79%, 12 87%, 17
FLD-3NN 89%, 19 79%, 2 82%, 18 87%, 17
FLD-NM 91%, 19 79%, 14 82%, 19 90%, 17
SVM-C1 80%, 19 82%, 13 69%, 12 85%, 17

SVM-C10 93%, 19 82%, 13 77%, 14 90%, 17
SVM-C100 91%, 17 82%, 15 77%, 14 90%, 17

Table 1: Best leave-one-out cross-validation accuracy using PCTt: Each cell shows (acc, fts),
where acc is the best accuracy, and fts is the number of features used.

2. The PCTt results always outperform the PCV for each classifier in terms of the best case.
The improvements range from 3% to 28% for all the cases. In PCTt, the classes are not
separated well if there are insuficient features, while using too many introduces extra noise.

3. The performances of FLD-BM, FLD-1NN, FLD-3NN and FLD-NM are similar, and so are
those of SVM-C10 and SVM-C100. However, SVM-C1 underperforms SVM-C10, which
indicates the cost of constraint violation needs to be set appropriately in SVMs.

We observe that the PCTa results provide a kind of upper bound on the classification results
– in the sense that PCTt, which has no knowledge of the test subject, cannot be expected to do
better than PCTa. In addition to showing that a high level of classification accuracy is possible,
the results with PCTamay also be instructive in determining how many dimensions are required to
support perfect classification (at least in this representation), and how many seem to be too many
(at least when using the SVM classifiers).

Clearly, PCTa cannot be used in practice, since the class of a new example is always unknown
and this is the exact reason for classifying it. Thus, PCTt becomes a practical feature selection
scheme for effective classification. In the rest of the study, we will be focusing on this scheme.

Table 1 shows the best accuracy using PCTt feature selection approach together with the num-
ber of features used for each case. SVM-C10 performs the best for Sall data set, with 93% accuracy
for the left set and 82% for right. FLD-NM performs the best for Srhm data set, with 82% accuracy
for the left set and 90% for right. In general, FLD-NM, SVM-C10 and SVM-C100 are similar in
performance. Another observation is that left hippocampi predict better in Sall while right ones
predict better in Srhm. This suggests that gender and handedness may affect hippocampal shape
changes in schizophrenia.

The 93% accuracy achieved for S
left
all greatly outperforms our previous result [29] and is com-

petitive with the best result in previous hippocampal studies [10, 13, 15, 16, 27, 34]; please refer
to Section 1 for a brief description of these studies. Note that our data set is different from the data
sets in previous studies, due to a lack of shared data repositories in this domain. However, these
are similar results using different techniques on similar types of data.
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5 Further analyses

In this section, we present two additional analyses based on our classification framework and
they are useful in medical applications. One is receiver operating characteristic (ROC) analysis,
which trades off sensitivity (the probability patients are correctly predicted) for specificity (the
probability controls are correctly predicted). This approach overcomes the problem of possible bias
introduced by a fixed threshold or different size classes and is often used in visualizing the behavior
of diagnostic systems [33]. The other is an approach of visualizing the discriminative pattern
captured by a linear classifier to provide medical researchers with a comprehensible description
of the group difference. We show these analyses using FLD-based classification, though they can
also be applied to the linear SVM cases.

5.1 ROC analysis

In medical classification problems, the terms sensitivity and specificity are defined as follows: sen-
sitivity is the probability of predicting disease given the true state is disease; specificity is the
probability of predicting non-disease given the true state is non-disease. The receiver operating
characteristic (ROC) curve [18, 33] is a commonly used summary for assessing the tradeoff be-
tween sensitivity and specificity. It is a plot of the sensitity versus specificity as we vary the
parameters of a classification rule. In the case of a linear classifier, this can be done by setting the
decision boundary at various points.

We perform ROC analysis using our PCA and FLD framework. However, in our leave-one-
out experiments, each trial corresponds to an independent FLD projection. Therefore, test objects
may be projected differently according to different bases, which makes the resulting scalar values
incomparable across different trials. We use the following procedure to normalize these values into
a standard range: for each trial, we scale and shift all the projections so that the class means for
each trial’s training set fall on -1 and 1, and all projections are sign-flipped, if necessary, so that
the mean of the patient class is positive. Now test subject projections can then be combined, since
they correspond to identically aligned training sets in the FLD space.

For each leave-one-out experiment, we calculate normalized test subject projections as de-
scribed above. Given a decision threshold, a test subject is classified as a control if its normalized
projection is less than the threshold; otherwise it is a patient. By varying the threshold, an ROC
curve can be constructed based on the sensitivity and specificity that result at each threshold. In
addition, the area under the ROC curve (AUROC) can be used as a performance measure for a
classifer [3], because it is the average sensitivity over all possible specificities.

Figure 10 shows the ROC analysis results for leave-one-out cross-validation on real hippocam-
pal data sets using the FLD classification and PCTt feature selection scheme. In Figure 10(a), the
best ROC curves are plotted for each data set, where the number of features is selected to achieve
the maximum AUROC. In Figure 10(b), the AUROC values are plotted for different experiments by
varying the number of features used. Note that the ROC plot is often defined as sensitivity versus
1− specificity (i.e., the false positive rate), dating from its origin as a signal detection technique,
but for our purposes sensitivity versus specificity is equivalently useful and easier to read.

There are several advantages to using the ROC analysis as follows.

1. The ROC approach is threshold independent, which overcomes the problem of possible bias
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Figure 10: ROC analysis for leave-one-out cross-validation on real hippocampal data sets using
FLD classification and PCTt feature selection scheme. (a) ROC curves show the the sensitivity
versus specificity as the threshold for classification is shifted. The legend shows the data set, the
area under the ROC curve (AUROC) and the number of features used. (b) AUROC is an alternative
for evaluating the performance of a classifier and is plotted on the Y axis. The number of features
used in each experiment is plotted on the X axis.

introduced by a fixed threshold. It is a way to evaluate all the possible parameterizations of a
classifier. Rather than using a simple heuristic or a Bayesian model to select a threshold for
FLD, this approach gives the overall performance, which might be termed “discriminative
power”, over all the thresholds one could pick.

2. The ROC analysis inherently deals with the problem of imbalanced training sets, e.g., a 5:3
ratio of patients to controls. One simple way to deal with this is to consider the accuracy of
classifying patients and the accuracy of classifying controls separately, and perhaps average
these two quantities to arrive at an overall accuracy estimate; the ROC approach takes this
one step further and not only calculates the two accuracies independently, but does so while
shifting the classification threshold over a range of values.

3. AUROC is an effective method for performance comparison between classification systems.
For example, for each hippocampal data set, the best number of features selected by mea-
suring the AUROC value in Figure 10(b) closely matches the best case shown in Table 1 by
measuring the overall accuracy. The AUROC value can be thought of as an evaluation of the
potential for a linear classifier to succeed on given data.

4. The ROC curve is a useful means of visualizing a classifier’s performance in order to select
a suitable operating point, or decision threshold. In the medical case, the cost/effect of
misclassifying a patient as a normal is often higher/worse than misclassifying a normal as a
patient. The ROC curve is a useful basis for minimizing misclassification cost rather than
misclassification rate.
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5.2 Visualization of discriminative patterns

Based on the PCA and FLD framework presented above, we introduce a method for visualizing
discriminative patterns. This method shares the same idea employed by Golland et al. [17] for a 2D
shape classification problem: for a linear classifier, the deformation showing class differences can
be visualized using the normal to the separating hyperplane. Applying PCA and FLD as detailed
above to a shape set, we get a discriminative value v for each shape x:

v = x
T
δ ∗ Bpca ∗ Bfld = x

T
δ ∗ w, (22)

where
xδ = x − x̄ (23)

is the deformation of x from the mean shape x̄, Bpca consists of a subset of eigenvectors, depending
on which principal components are selected, and Bfld is the corresponding FLD basis. Thus w is
a column vector that weights the contribution of each deformation element in xδ to v. Given a
landmark location l, we use xδ(l) to denote the vector containing deformation fields associated
with l in xδ, and w(l) the vector of the corresponding weights in w. Thus, the contribution made
by each landmark l can be calculated as

C(l) = xδ(l)
T ∗ w(l). (24)

Based on this formula, we have two observations as follows.

1. A large magnitude of w(l) indicates that location l has discriminative power, since even small
local deformations at this location will have a noticeable effect on the overall classification.

2. Assume Class A has more positive discriminative values v’s than Class B. The vector w(l)
actually indicates a local deformation direction towards Class A. The reason is that the loca-
tion contribution C(l) = xδ(l)

T ∗w(l) is maximized if the local deformation xδ(l) shares the
same direction as w(l), which makes the shape more towards Class A. In contrast, −w(l)
indicates the local deformation direction towards Class B.

We can map w(l) or -w(l) vectors onto the mean surface to show significant discriminative
regions and even deformation directions towards a certain class. We note that this becomes a way of
showing statistical group difference implied by the classifier model. We create such a visualization
for several of our data sets using the following procedure: (1) apply PCA to all shapes in a data
set; (2) order principal components using t-test over all shapes to obtain PCTa feature ordering; (3)
apply FLD using the minimum number of features needed, according to PCTa ordering, to achieve
a perfect discrimination between classes; (4) backproject the corresponding -w(l) and w(l) vectors
onto the mean surface, and use color to code their magnitudes.

Figure 11 shows the mapping result for the synthetic rectangular surface set displayed in Fig-
ure 6, where only one feature is used for obtaining a perfect class separation. The significant region
captured by the visualizaiton clearly matches our intuition on how to distinguish these two classes.

Figure 12(a) shows the result for the synthetic right hippocampus set displayed in Figure 4,
where five features are used for obtaining a perfect class separation. For comparison, in Fig-
ure 12(b), we show the mappings of group mean differences x̄C1− x̄C2 and x̄C2− x̄C1 on the mean
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Figure 11: Discriminative patterns for Srec
syn, the synthetic rectangular surface set displayed in Fig-

ure 6. The left plot and the right plot show the mappings of −w(l) and w(l) vectors onto the mean
surfaces, suggesting deformations towards Class C1 and Class C2, respectively, since Class C2 has
the more positive PCA/FLD projection. The length of each vector is scaled for better visualization.
Its actual magnitude is coded in color.

surface for the same data set, where x̄C1 and x̄C2 are the mean shapes of Class C1 and Class C2
in landmark representation respectively. By comparing (a) and (b), we observe that the discrim-
inative patterns in (a) roughly capture the difference between class means in (b), which matches
the intuition. In addition, (a) shows a significant discriminative (yellow/light) region in the lower
middle part, while (b) shows just a small difference between class means there. By checking the
data carefully, we discover the reason behind this: although this difference is small, the variance is
low and the resulting discriminative power is thus fairly high.

The above results on synthetic data sets validate the effectiveness of this technique. Now we
apply it to the real data sets. Figure 13 shows the results for real left and right hippocampal sets
displayed in Figure 4, where 14 and 13 features are needed for obtaining perfect class separations,
respectively. Mapping results show that discriminative patterns appear in the head/anterior and
tail/posterior regions for both left and right hippocampi. These findings are consistent with re-
cent reports of shape abnormality in both anterior [10, 27] and posterior regions [12, 27, 28] for
hippocampi in schizophrenia. This technique visualizes statistical group difference captured by a
classifer model, and can provide an intuitive, comprehensible, and useful way for visual diagonsis.

6 Computational Issues

In this section, we discuss the computation involved in the study. Figure 14 shows the major
processing steps in our framework. Now we examine the computational cost for each of these steps.
For most of them, we provide a time complexity measure. For some convergence procedures using
iterative methods, we only report the empirical performance. Our experiments are implemented
using Matlab and performed on a Dell Optiplex GX260 Pentium 4 PC with a 2.4 GHZ CPU and
512 MB of RAM, which is running WinXP Professional OS and Matlab Version 6.5.

Let nv be the number of vertices on the square surface mesh of a volumetric object. Surface
parameterization involves an initial parameterization and a following optimization. The initial
parameterization can be done in time O(n3

v), the time required for setting up and solving nv si-
multaneous linear equations with nv unknowns [8]. The optimization is the most time consuming
step in the framework. An iterative procedure is employed for achieving a local minimum, and the
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(a) Discriminative patterns for Ship
syn (b) Differences between group means for Ship

syn

Figure 12: (a) Discriminative patterns for Ship
syn, the synthetic right hippocampus set displayed in

Figure 4. The left plot and the right plot show the mappings of −w(l) and w(l) vectors onto
the mean surfaces, suggesting deformations towards Class C1 and Class C2, respectively, since
Class C2 has the more positive PCA/FLD projection. The length of each vector is scaled for better
visualization. Its actual magnitude is coded in color. (b) Group mean differences x̄C1 − x̄C2 and
x̄C2 − x̄C1 are mapped onto the mean surface for Ship

syn data set, where x̄C1 and x̄C2 are the mean
shapes of Class C1 and Class C2 in landmark representation respectively. Again, the magnitude of
each local landmark difference vector is coded in color.

number of iterations required for the convergence differs for different surfaces. Please see [4] for
more details about the algorithms in this step. In our experiments, where we have nv = 2480±357
(mean ± standard deviation), the initial parameterization typically can be done within 3 seconds.
The typical running time for optimization ranges from 15 minutes to 3 hours, with a few worst
cases of 7 – 8 hours.

Let nc be the number of SPHARM coefficients used in the expansion. The major computations
of both SPHARM expansion and SPHARM normalization steps are to solve three overdeter-
mined sets (for x, y and z coordinates respectively) of nv simultaneous linear equations with nc

unknowns in a least squares fashion, where nc is chosen to be significantly smaller than nv for
better surface fitting. Please refer to Eq. 4 and also [4] for more details. Since solving an overde-
termined set of m equations with n unknowns can be done in time O(n2 ∗ m) [8], the cost of both
steps is O(n2

c ∗ nv). In our experiments, we pick nc = 169, and both steps can be done within 3
seconds.

Let ns be the number of shapes in a data set, and nl be the resolution of the landmark represen-
tation (i.e., each shape has nl landmarks). The point distribution model (PDM) step involves two
substeps. In the first substep, conversions from SPHARM coefficients to landmarks are performed
for ns shapes, which takes O(ns ∗ nl ∗ nc) time (Eq. 4). In the second substep, PCA is performed
on ns shapes to reduce each landmark representation (3∗nl coordinates) to a feature vector (ns−1
features). The main computation is the eigenanalysis of the covariance matrix (Eq. 8 and Eq. 9),
which takes time O(n3

l ). In the case of ns � nl, the computational time for PCA can be improved
to O(n2

s ∗ nl), by using the Gram matrix for eigenanalysis according to [35]. In our experiments,
for ns = 56, nl = 642 and nc = 169, the whole PDM step can be done in 6 seconds.

Feature selection via t-tests computes a re-ordering of ns − 1 features by running t-tests on ns

(for PCTa ordering) or ns − 1 (for PCTt ordering) examplars. The running time is O(n2
s), which
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(a) Discriminative patterns for S left
all

(b) Discriminative patterns for Sright
all

Figure 13: Discriminative patterns for (a) S left
all and (b) Sright

all , the data sets shown in Figure 2, by
mapping the weight vectors w(l) to the mean surfaces. In each of (a-b), −w(l) vectors are mapped
onto the first two views and indicate the directions towards a more normal shape, while w(l)
vectors are mapped onto the last two views showing the directions towards a more schizophrenic
shape. Note that the schizophrenic class has the more positive PCA/FLD projection. The length of
each vector is scaled for better visualization. Its actual magnitude is coded in color. Yellow/light
color indicates more discriminative power while green/dark indicates less.

22



Surface Parameterization 

SPHARM Expansion

SPHARM Normalization

Point Distribution Model

Fisher’s Linear Discriminant Linear Support Vector Machine

Accuracy Estimation ROC Analysis Visualization

Volumetric Object Surfaces

Mappings onto the Unit Sphere

SPHARM Coefficients

Normalized SPHARM Coefficients

Vectors of Selected Features

Classifier: Decision Hyperplane

Classifier Accuracy ROC Curve, Area under ROC Curve Discriminative Pattern

Feature Selection

Vectors of Shape Features

Figure 14: Major steps in the framework. Boxes refer to processing steps, while unboxed labels
identify the data or results they generate.

is trivial due to a very small ns (56 or 39) in our study.
Let nf be the number of selected features. Fisher’s linear discriminant (FLD) calculates the

generalized eigenvectors of nf ×nf between-class and within-class scatter matrices (Eq. 12, Eq. 13
and Eq. 14). This can be done in time O(n2

f ∗ ns + n3
f ) = O(n2

f ∗ ns) for setting up the scatter
matrices and solving the generalized eigenvector problem, where O(ns) shape feature vectors are
involved in FLD. The linear support vector machines (SVM) implementation we use solves an
optimization problem using quadratic programming and Lagrange multipliers, which involves an
iterative procedure. The iterations required for the convergence depends on the input data and
parameter settings, and so we only report its empirical performance in the next paragraph.

Accuracy estimation employs leave-one-out cross-validation, involving ns individual training
processes. In the FLD case, the total cost becomes O(n2

f ∗n2
s); and the typical running time ranges

from 0.07 to 0.8 seconds, for ns = 56 and nf ∈ {1, · · · , 53}, in our experiments. In the SVM
case, the performance of this procedure depends on the parameter C, which specifies the cost of
the constraint violation. With ns = 56 and nf ∈ {1, · · · , 53}, the typical running times are 0.08 –
2.0 seconds for C = 1 and C = 10, and 0.2 – 12 seconds for C = 100.

ROC analysis requires normalizing leave-one-out projections in the discriminant space and
computing the ROC curve and the area under the ROC curve. This can be done in time O(n2

s).
Visualization involves backprojecting the vector normal to the separating hyperplane onto the
original surface represented by nl landmarks, which takes only O(nl) time. The costs of these final
steps are trivial when compared to the earlier processing stages in the framework.

Data sets in the brain imaging domain are often relatively small due to the difficulty and expense
of data collection. Thus, according to the above analysis, the computational cost is usually not a
problem here, since all the above steps except surface parameterization are very efficient for small
sample set learning and surface parameterization is still feasible in our case. In fact, earlier work
has been done [26] on improving the efficiency of surface parameterization. We are also studying
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more efficient and scalable approaches for parameterizing larger objects and make this framework
applicable to more general cases.

7 Conclusions

This paper presents a new technique for 3D brain structure classification that combines a power-
ful surface modeling method with suitable pattern classification and processing techniques. The
SPHARM description is chosen to model a closed 3D surface. It is a relatively new and powerful
parametric surface description, which enforces surface continuity and regularization in a natural
way while preserving anatomical structures and shape. Using this approach, different object sur-
faces can be parameterized and normalized to a common reference system to derive a detailed
landmark representation comparable across objects. The choice of point distribution model for di-
mensionality reduction and feature extraction makes classification feasible for small sample cases
and facilitates intuitive visualization.

Several linear classifiers (four FLD and three linear SVM variants) together with different fea-
ture selection approaches are employed for classification, where feature selection involves using
the standard principal component ordering by variance-accounted-for as well as alternative order-
ings by significance as assessed using a t-test. These techniques are first validated using simulated
data and then applied to real hippocampal data.

Exhaustive experimentation on hippocampal data in schizophrenia reveals that the proposed
PCTt feature selection technique works effectively with most classifiers and improves the leave-
one-out cross-validation accuracy significantly. We achieve the best accuracies of 93% for the
whole set and 90% for right-handed males, competitive with the best results in similar studies
using different techniques on similar types of data. Our results suggest the left hippocampus is a
stronger predictor in the whole set while the right one is stronger in right-handed males.

Based on our classification framework, a threshold-free ROC analysis is also employed, where
the ROC curve represents all potential discrimination performances by varying the decision crite-
rion, and AUROC is used as an alternative to evaluate the performance of a classifier. In addition,
to interpret a classifier in the original shape domain, we introduce an effective method for visual-
izing discriminative patterns. This approach visualizes the statistical group difference captured by
a classifier model and provides an intuitive way to help doctors in visual diagnosis.

The proposed techniques can also be applied to other 3D shape classification problems in com-
puter vision and image processing, where the involved objects are arbitrarily shaped but simply
connected. Interesting future topics include (1) extending this framework to learning applications
with very large data sets, and (2) developing more efficient surface parameterization techniques.
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