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“Magic” Reconstruction: Compressed Sensing
By Cleve Moler

When I first heard about compressed sensing, I was skeptical. There were claims that it reduced the amount of data  

required to represent signals and images by huge factors and then restored the originals exactly. I knew from the  

Nyquist-Shannon sampling theorem that this is impossible. But after learning more about compressed sensing, I’ve 

come to realize that, under the right conditions, both the claims and the theorem are true.

The Nyquist-Shannon sampling theo-
rem states that to restore a signal exactly and 
uniquely, you need to have sampled with at 
least twice its frequency. Of course, this the-
orem is still valid; if you skip one byte in a 
signal or image of white noise, you can’t re-
store the original. But most interesting sig-
nals and images are not white noise. When 
represented in terms of appropriate basis 
functions, such as trig functions or wave-
lets, many signals have relatively few non- 
zero coefficients. In compressed (or compres-
sive) sensing terminology, they are sparse. 

The Underlying Matrix Problem
Naturally, the aspect of compressed sensing 
that first caught my attention was the under- 
lying matrix computation. A raw signal or 
image can be regarded as a vector f with 
millions of components. We assume that f 
can be represented as a linear combination 
of certain basis functions:

f = Ψc

The basis functions must be suited to 
a particular application. In our example, 
Ψ is the discrete cosine transform. We 
also assume that most of the coefficients 
c are effectively zero, so that c is sparse. 
Sampling the signal involves another lin-
ear operator,

b = Φf

MATLAB® can provide two different an-
swers. Algebraically, the problem is a 1-by-2 
system of linear equations with matrix

A = [1/2 1/2]

and right-hand side 

b = 3

We want to find a 2-vector y that solves 
Ay = b. The minimum norm least squares 
solution is computed by the pseudoinverse,

y = pinv(A)*b

y =

  3

  3

But backslash generates a different solution:

x = A\b

x =

  6

  0 

Both solutions are valid, but human 
puzzle-solvers rarely mention them. Notice 
that the solution computed by backslash is 
sparse; one of its components is zero.

A Larger Instance of the Same Task
The signal or image restoration problem 
is a larger instance of the same task. We 

In our example, b is a few random sam-
ples of f, so Φ is a subset of the rows of the 
identity operator. But more complicated 
sampling operators are possible.

To reconstruct the signal, we must try to 
recover the coefficients by solving

Ax = b, where A = ΦΨ

Once we have the coefficients, we can re-
cover the signal itself by computing

f ≈ Ψx

Since this is a compression, A is rectan-
gular, with many more columns than rows. 
Computing the coefficients x involves solv-
ing an underdetermined system of simulta-
neous linear equations, Ax = b. In this situ-
ation, there are many more unknowns than 
equations. The key to the almost magical 
reconstruction process is to impose a non-
linear regularization involving the l1 (that’s 
“ell-sub-1”) norm.

I described a tiny version of this situa-
tion in a 1990 Cleve’s Corner column en-
titled “The World’s Simplest Impossible 
Problem.” I am thinking of two numbers 
whose average is 3. What are the numbers? 
After complaining that I haven’t given you 
enough information, you might answer 2 
and 4. If you do, you have unconsciously 
imposed a kind of regularization that re-
quires the result to be two distinct integers. 
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are given thousands of weighted averages 
of millions of signal or pixel values. Our 
job is to re-generate the original signal or 
image. We have the compressed sample, 
b, and we need to solve Ax = b. There is 
a huge number of possible solutions. The 
basis for picking the right one involves vec-
tor norms. The familiar Euclidean distance 
norm, l2, is

l2: norm(x,2) = sqrt(sum(x.^2))

The “Manhattan” norm, l1, is named after 
travel time along the square grid formed by 
city streets.

l1: norm(x,1) = sum(abs(x))

The notation l0 is used for a function that 
only counts the number of nonzero compo-
nents. It’s actually not a norm.

l0: norm0(x) = sum(x~=0)

These norms impose three different non-
linear regularizations, or constraints, on 
our underdetermined linear system.

From all x that satisfy Ax = b, find an x 
that minimizes lp(x)

For our 20-year-old example, l2(y) is less 
than l2(x), and l1(y) and l1(x) happen to be 
equal, but l0(y) is greater than l0(x).

Sparsity and the l1 Norm 
The keys to compressed sensing are sparsity 
and the l1 norm. If the expansion of the orig-
inal signal or image as a linear combination 
of the selected basis functions has many zero 
coefficients, then it’s often possible to recon-
struct the signal exactly. In principle, com-
puting this reconstruction should involve 
counting nonzeros with l0. This is a combi-
natorial problem whose computational com-
plexity makes it impractical. (It’s NP-hard.) 
Fortunately, as David Donoho, Emmanuel 
Candés, and Terence Tao have shown, l0 can 
be replaced by l1. They explain that “with 
overwhelming probability” the two prob-
lems have the same solution. The l1 compu-
tation is practical because it can be posed as 
a linear programming problem and solved 
with the traditional simplex algorithm or 
modern interior point methods.

An Example
Our example uses the discrete cosine trans-
form (DCT) as the basis. The signal generated  
by the “A” key on a touch-tone telephone is 
the sum of two sinusoids with incommensu-
rate frequencies,

f(t) = sin(1394πt) + sin(3266πt) 

If we sample this tone for 1/8 of a second at 
40000 Hz, the result is a vector f of length n = 
5000. The upper plot in Figure 1 shows a por-
tion of this signal, together with some of the 
m = 500 random samples that we have taken. 
The lower plot shows the coefficients c, ob-
tained by taking the inverse discrete cosine 
transform of f, with two spikes at the appro-
priate frequencies. Because the two frequen-
cies are incommensurate, this signal does 
not fall exactly within the space spanned by 
the DCT basis functions, and so there are a 
few dozen significant nonzero coefficients. 

For our example, the condensed signal 
is a vector b of m random samples of the 

Figure 1. Top: Random samples of the original signal generated by the “A” key on a touch-tone phone. 
Bottom: The inverse discrete cosine transform of the signal.
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original signal. We construct a matrix 
A by extracting m rows from the n-by-n 
DCT matrix

D = dct(eye(n,n));

A = D(k,:)

where k is the vector of indices used for the 
sample b. The resulting linear system, Ax = 
b, is m-by-n, which is 500-by-5000. There are 
10 times as many unknowns as equations.

To reconstruct the signal, we need to 
find the solution to Ax = b that minimizes 
the l1 norm of x. This is a nonlinear opti-
mization problem, and there are several  
MATLAB based programs available to solve 
it. I have chosen to use l1-magic, written by 
Justin Romberg and Emmanuel Candès 
when they were at Caltech. The upper plot 
in Figure 2 shows the resulting solution, x. 
We see that it has relatively few large com-
ponents and that it closely resembles the 
DCT of the original signal. Moreover, the 
discrete cosine transform of x, shown in the 
lower plot, closely resembles the original 
signal. If audio was available, you would 
be able to hear that the two commands 
sound(f) and sound(dct(x)) are nearly 
the same.

For comparison, Figure 3 shows the 
traditional l2, or least squares, solution to 
Ay = b, computed by

y = pinv(A)*b

There is a slight hint of the original sig-
nal in the plots, but sound(dct(y)) is just 
a noisy buzz.

It is too early to predict when, or if, we 
might see compressed sensing in our cell 
phones, digital cameras, and magnetic res-
onance scanners, but I find the underlying 
mathematics and software fascinating. ■
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Compressed Sensing

Compressed sensing promises, in theory, to 

reconstruct a signal or image from surpris-

ingly few samples. Discovered just five years 

ago by Candès and Tao and by Donoho, 

the subject is a very active research area.  

Practical devices that implement the theory 

are just now being developed. 

It is important to realize that compressed 

sensing can be done only by a compress-

ing sensor, and that it requires new record-

ing technology and file formats. The MP3 

and JPEG files used by today’s audio sys-

tems and digital cameras are already com-

pressed in such a way that exact reconstruc-
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impossible. Some of the Web postings and 

magazine articles about compressed sens-
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