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Abstract

Partial correlation is a useful connectivity measure for brain networks, especially, when it is

needed to remove the confounding effects in highly correlated networks. Since it is difficult to

estimate the exact partial correlation under the small-n large-p situation, a sparseness constraint

is generally introduced. In this paper, we consider the sparse linear regression model with a

l1-norm penalty, a.k.a., least absolute shrinkage and selection operator (LASSO), for estimating

sparse brain connectivity. LASSO is a well-known decoding algorithm in the compressed sensing

(CS). The CS theory states that LASSO can reconstruct the exact sparse signal even from a

small set of noisy measurements. We briefly show that the penalized linear regression for partial

correlation estimation is related with CS. It opens a new possibility that the proposed framework

can be used for a sparse brain network recovery. As an illustration, we construct sparse brain

networks of 97 regions of interest (ROIs) obtained from FDG-PET data for the autism spectrum

disorder (ASD) children and the pediatric control (PedCon) subjects. As a model validation,

we check their reproducibilities by leave-one-out cross validation and compare the clustered

structures derived from the brain networks of ASD and PedCon.

Keywords: Brain Connectivity, Compressed Sensing, Partial Correlation, LASSO.

1 Introduction

The functional and anatomical connectivity of human brain has known to exhibit large and complex

network structures with nontrivial topological characteristics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

By incorporating the graph theoretical approaches into connectivity analysis, we can gain a new

understanding of the characteristics of human brain, from a microscale connectivity between single

neurons to a macroscale connectivity between regions of interest (ROIs) in brain images. The brain

connectivity has been usually categorized into well-known complex networks such as small-world

[1, 3, 4, 5, 7, 11], scale-free [2, 5] or modular networks [8, 9, 10]. The human brain networks is

formed from connectivity matrices defined between neuronal elements (single neurons for microscale

and ROIs for macroscale network modeling). They are also known as human connectome [13].

The majority of previous brain network studies have been based on thresholding correlation in

localizing the focal regions of high connectivity [14, 15, 2]. The correlation is used as a similarity

measure of network connectivity between two regions. However, the main limitation of correlation-

based connectivity analyses is that they fail to explicitly factor out the confounding effect of other

2



regions. To remedy this shortcoming, partial correlation has been naturally introduced in factoring

out the dependency of other regions [16, 7, 6] or eliminating the effect of experimental designs

[17]. Unfortunately, this type of problem usually belongs to the small-n large-p setting, where the

number of regions p are substantially larger than the number of samples n, so it is not feasible

to estimate the exact partial correlation accurately [18, 19]. So far the majority of literature

have used the penalized likelihood method in imposing the sparseness on the partial correlation

estimation [20, 21, 22, 23, 24, 25]. Moreover, since the brain networks are known to be sparse and

highly clustered [26, 7], it is reasonable to incorporate the sparsity of network in estimating partial

correlation. In this paper, we introduce a different approach based on the penalized linear regression

for estimating sparse partial correlation [27, 28]. The penalized linear regression with l1-norm, which

is also known as the basis pursuit denoising in signal processing and least absolute shrinkage and

selection operator (LASSO) in statistics, is usually formulated as the convex optimization to find

the sparsest solution of the under-determined linear regression problem [29, 30].

LASSO is one of preferred decoding algorithms in the compressed sensing (CS) theory [31, 32,

33, 34]. The CS-theory states that if LASSO satisfies sparsity and incoherence, the exact recovery

is guaranteed with the overwhelmingly high probability, even though the measurement data is

not sufficient and contaminated with noise [35, 36]. Note that, in some sense, incoherence is a

stronger condition than a uniform uncertainty principle (UUP) [37]. So, if our penalized linear

regression for the partial correlation estimation satisfies sparseness and UUP, CS may provide a

natural framework for modeling sparse brain networks, which has not been attempted before. It

has been already examined that some measurement ensembles such as the Gaussian, Fourier or

binary ensembles hold UUP [35]. We show that the proposed framework and the brain imaging

data satisfy UUP by borrowing UUP for Gaussian ensemble.

In this paper, we focus on sparse model building of the macro-scale connectivity of human brain

under CS. The proposed model is applied to the 97 ROIs extracted from FDG-PET data for autistim

spectrum disorder (ASD) children and pediatric control (PedCon) subjects. It is generally known

that ASD has the global underconnectivity and the local overconnectivity in the key brain regions

[38, 39]. The differences between ASD and PedCon are mostly found in connectivities between

lobes, especially, connection between secondary association cortices such as frontal and parietal

regions [40, 41, 5]. Dense internal and sparse external linkages are properties of a cluster (also

called a community or module). In particular, some studies suggest that the small-world network,
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which is one of famous characteristics of brain connectivity, induces a modular architecture (or

community structure) [8, 9, 10]. Therefore, in this study, after estimating the partial correlation by

the penalized linear regression, we seek the possible modular structures of ASD and PedCon brain

network and observe their differences based on the lobe structures.

The main contributions of this paper are:

• to formulate the sparse brain connectivity based on correlation and partial correlation in the

penalized linear regression framework,

• to simply show that the penalized linear regression for partial correlation estimation can near-

optimally recover the sparse brain connectivity by showing our study satisfies UUP of the

Gaussian ensemble,

• to show the reproducibilities of the estimated networks by changing the data set using the

leave-one-out cross-validation,

• and to show the modular structures of ASD and PedCon brain networks based on the existing

lobe structures for the first time.

The organization of the paper is as follows. In Section 2, we provide notations that will be

used through the paper and present the standard methods for calculating correlation and partial

correlation. We formulate the problem of estimating correlation and the partial correlation under a

sparsity constraint as the sparse linear regression in Section 3. In Section 4, after briefly introducing

CS and checking the precondition for satisfying UUP of the proposed model, we further prove

that our LASSO-based connectivity method satisfies UUP and the near-optimal brain connectivity

recovery can be done. Numerical experiments are given in Section 5, where we use the 97 ROIs

extracted from FDG-PET data for 26 autistic and 11 pediatric control subjects. We show that the

proposed method consistently finds the brain networks which characterize the two groups well and

have significant group differences in network connectivity.
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2 Network Construction

A brain network is a graph G = (V,E) consisting of vertex (or node) set V and edge (or links) set E,

which is a subset of V ×V . The graph can be uniquely represented as a square connectivity matrix,

where the size of matrix is the number of nodes in the graph. The elements of connectivity matrix

correspond to the weights of edge between two nodes. The connectivity matrix of an unweighted

graph consists of entries 0 and 1, representing whether the edge exists or not. We call such a

connectivity matrix an adjacency matrix, which is also obtained by thresholding the elements of

connectivity matrix. In this section, we briefly introduce a connectivity matrix defined in terms of

correlation and partial correlation.

2.1 Connectivity Matrix

Suppose
{
f1, . . . ,fp

}
is the n-dimensional data vector measured at the p selected ROIs on the

FDG-PET images of n subjects. We assume f i are centered and normalized, , i.e., f>i 1n = 0 and

f>i f i = 1 for all i = 1, . . . , p. 1n ∈ Rn×1 is a vector of which all elements are equal to 1. The

sample covariance matrix is then defined as

Σ = [σij ] =

[
f>i f j
n− 1

]
∈ Rp×p. (1)

The correlation coefficient between f i and f j is defined as

ρij = σij/
√
σiiσjj = (f>i f j)/

√
(f>i f i)(f

>
j f j) (2)

= f>i f j .

If we note the inverse of covariance matrix, i.e., concentration or precision matrix, as Π = Σ−1 =

[πij ] ∈ Rp×p, the partial correlation between f i and f j is [42]

θij = −πij/
√
πiiπjj . (3)

Usually the connectivity matrix is then constructed as a function of correlation or partial correlation.
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2.2 Relationship between Correlation and Partial Correlation

The elements πij (i < j) of precision matrix Π can be rewritten as

πij =
(−1)i+jM (i,j)

|Σ|
= σji

M (ij,ij)

|Σ|
−
∑
k 6=i,j

(−1)i+kσjk
M (ij,jk)

|Σ|
, (4)

where M (ij,jk) is the minor, i.e., the determinant of the matrix removing the ith and jth rows and

the jth and kth columns from Σ. By interchanging the indices, we also have

πji =
(−1)i+jM (j,i)

|Σ|
= σij

M (ij,ij)

|Σ|
−
∑
k 6=i,j

(−1)j+kσik
M (ij,ik)

|Σ|
. (5)

Since the precision matrix is symmetric, an algebraic manipulation shows

πij = σij
M (ij,ij)

|Σ|
− 1

2

∑
k 6=i,j

(
σjkπki|∼j

M (j,j)

|Σ|
+ σikπkj |∼i

M (i,i)

|Σ|

)
,

where πki|∼j is the (k, i) element of inverse of the matrix removing the jth row and column from Σ.

The above fomula shows that the partial correlation πij is the correlation between the ith and the

jth data vectors (the first term) while excluding all correlations intermediated by other data vectors

(the second term). The partial correlation has been often used for the brain network analysis and

its applications due to the ability factoring out the influence of other regions on correlation [43].

However, for the small-n and large-p setting, it is difficult to estimate the partial correlation. So

we introduce sparseness constraint in the linear regression model for estimating partial correlation.

3 Sparse Connectivity Estimation

In this section, we present the penalized linear regression for estimating sparse correlation and

partial correlation.

3.1 Linear Regression for Correlation and Partial Correlation

Both correlation and partial correlation can be obtained by the linear regression as follows :

• Correlation ρij :

f i = αijf j + εi, for i = 1, ..., p, (6)
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where the regression parameters αij is equal to correlation ρij in (2) when f i is centered and

normalized.

• Partial Correlation θij :

f i =
∑
j 6=i

βijf j + εi, for i = 1, ..., p, (7)

where εi is uncorrelated with all variables except f i and βij is the measure of relationship

between data vectors f i and f j given all other data vectors. When var(εi) = (1/πii) and

cov(εi, εj) = πij/(πiiπjj), the partial correlation θij is given by [27]

θij = −πij/
√
πiiπjj = βij

√
(πii/πjj). (8)

The proof of statements (6) and (8) are in Appendix 7.

Now, we change the linear regression model in (7) to a matrix form (See Fig. 1). If we denote

X = [f1, · · · ,fp] ∈ Rn×p and B = [βij ] ∈ Rp×p where B is a symmetric matrix with zero diagonal

terms, we can rewrite the linear regression model for estimating partial correlation in (7) as

X = XB. (9)

Now we vectorize both sides in (9) as

vec(X) = vec(XB), (10)

where vec(X) = [f>1 · · ·f>p ]> is the vectorization operator. Since vec(XY Z) = (Z> ⊗X)vec(Y )

with the Kronecker product ⊗ [44], we have

vec(XB) = (I ⊗X)vec(B),

where I ∈ Rp×p is a identity matrix. Then, (10) can be written in a matrix form

x = Ab, (11)

where x = vec(X), A = (I ⊗X) ∈ Rnp×p2 and b = vec(B) ∈ Rp2×1. A is a block diagonal matrix,

but not a square matrix, of which main diagonal blocks consist of Xs as shown in Fig. 1(b). Note

that the elements of X follows Gaussian distribution with mean 0 and variance 1 because column

vectors, f1, . . . ,fp, are centered and normalized.
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Figure 1: Linear regression model for the partial correlation estimation. Linear regression model

in (7) is represented as (a) X = XB, where X = [f1, · · · ,fp] ∈ Rn×p and B = [βij ] ∈ Rp×p.

B is a symmetric matrix with zero diagonal terms. By vectorization vec(·) and the property of

Kronecker product ⊗, it can be changed to (b) x = Ab, where x = vec(X), A = I ⊗X ∈ Rnp×p2

and b = vec(B) ∈ Rp2×1. I ∈ Rp×p is a identity matrix. If b is s-sparse, i.e. it has at most s

number of nonzero elements, only the s′ selected column vectors of A are used for calculating x

(s′ ≤ s) as shown in (c).

If we denote N = np and P = p2 (n� p), estimating the partial correlation in the linear model

(11) fall under a high-dimension-small-sample-size situation. Thus, we should consider shrinkage

methods to regularize the model parameters and one solution is to add the sparseness penalty such

as l1 norm to the model parameters.

3.2 Adding the Sparseness Constraint

The solution of linear data model in (11) is usually obtained by the least squares minimization:

b̂ = arg min
b

‖ x−Ab ‖22, (12)

where ‖ · ‖2 is a l2-norm. When the linear regression is under a small-n large-p problem, there

exist possibly many solutions and we need to add the sparseness constraint to obtain one solution.

The sparsest solution is obtained by l0-norm penalty (number of non-zero elements) such as

min
b
‖ b ‖0 subject to x = Ab. (13)
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Since it is a combinatorial problem with NP-hard complexity, insted of l0-norm, we employ l1-norm

penalty (sum of absolute values of elements) such as

min
b
‖ b ‖1 subject to x = Ab, (14)

which is related with the linear programming, a.k.a., the basis pursuit denoising problem [29]. The

discussion about the l0 and l1 equivalence can be found in [45]. For a noisy case, we can change

(14) to the quadratic programming with a linear constraint

min
b
‖ x−Ab ‖22 subject to ‖ b ‖1< ε. (15)

This is known as LASSO [30, 46]. We apply the LASSO framework to the least squares loss function

of (6) and (7) for estimating sparse correlation and partial correlation as follows [27] :

• Model for sparse correlation estimation:

α̂ij = arg min
αij

p∑
i=1

∑
j 6=i
‖ f i − αijf j ‖22 +λ

∑
i,j

|αij |, (16)

• Model for sparse partial correlation estimation:

β̂ij = arg min
βij

p∑
i=1

‖ f i −
∑
j 6=i

βijf j ‖22 +λ
∑
i,j

|βij |. (17)

To solve these problems, we exploited the coordinate descent learning and the active-set algorithm

[27, 47]. The derivation and algorithms are outlined in Appendix 8.

4 Relationship with Compressed Sensing

In this section, we show that the sparse linear model for estimating partial correlation is related

with UUP. It opens a possibility that the the near-optimal recovery of sparse brain network is done

by our propose method.

4.1 Uniform Uncertainty Principle

The coherence of A, µ(A), is defined by the maximum correlation coefficient among all correlations

between two different column vectors in (11). If all basis vectors are orthogonal, the coherence is
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minimized. The exact sparse signal recovery is guaranteed for s-sparse signal, i.e. at most s number

of nonzero elements in a signal, if the coherence is bounded by µ(A) ≤ O(1/s) [48]. However, since

we assume that N � P , this condition is hard to satisfy. A looser condition, which guarantees the

near-optimal sparse data recovery is a UUP, a.k.a., restricted isometry property (RIP) [35, 49].

Definition 1 (UUP) A measurement matrix A satisfies the uniform uncertainty principle with

oversampling factor λ if, for every sufficiently small γ > 0 and any s-sparse vector b such that

s ≤ γ ·N/λ,

A holds inequalities

1
2
· N
P
· ‖ b ‖22 ≤ ‖ Ab ‖22 ≤

3
2
· N
P
· ‖ b ‖22, (18)

with probability at least 1−O(p−ρ/γ) for some fixed constant ρ > 0.

Supposed that S is a subset of index set {1, . . . , P} indicating the indices of s nonzero elements in

b and AS ∈ RN×s is a submatrix of A consisting of s column vectors selected by the index set S

(see Fig. 1(c)). Then, (18) is equivalent to

1
2
· N
P
≤ λmin(A>SAS) ≤ λmax(A>SAS) ≤ 3

2
· N
P
, (19)

where λmax(·) and λmin(·) are the largest and smallest eigenvalues.

Lemma 1 The Gaussian ensemble X ∈ Rn×p, which are i.i.d. N (0, 1/p), holds the UUP with

oversampling λ = log p.

Lemma 1 shows that, if we pick A in the sparse linear model x = Ab as a Gaussian measurement

ensemble X with n ≥ γ · s log p, then, sparse recovery of b can be done with overwhelmingly large

probability [35].

Now, we will show that the brain connectivity obtained by the penalized linear regression in (11)

can be recovered under UUP for the first time. Since it is induced based on lemma 1, we will show

the Gaussianess of data matrix X in (11) first.
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Figure 2: Checking Gaussian assumption of data matrix measured in ROIs for (a) ASD and (b)

PedCon. In the left panels, the horizontal axises indicate the quantiles of a normal distribution

while the vertical axises indiate the quantiles of an input sample. If the input data satisfies the

Gaussian assumption, the blue dots closely lie along the straight red line. In the right panels, the

horizontal axises display the index of ROIs while the vertical axes displays Lilliefors statistic which

measures the maximum difference between empirical and theoretical Gaussian distributions. Most

of ROIs (blue solid lines) shows value less than the cutoff values (red dotted lines), (a) 0.19 and

(b) 0.29 at the α level of 1%.
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4.2 Gaussianess of Data Matrix

Before discussing UUP of A = I ⊗X in the penalized linear regression model (11), we check its

gaussianess of data matrix X = [f1, · · · ,fp] ∈ Rn×p using both Lilliefors test and quantile-quantile

plots (QQ-plots) [50]. The QQ-plot visualizes how the empirical distribution follows the theoretical

Gaussian distribution by plotting the empirical quantile in the vertical axis versus the expected

theoretical quantile from a normal distribution in the horizontal axis. Because it is not possible to

visualize QQ-plots for all ROIs here, we measured the correlation coefficients r of scatter points in

the QQ-plots. If the empirical distribution follows Gaussian, r should asymptotically converge to 1.

For the normally distributed random numbers from N (0, 1) whose sample sizes are same with the

data matrix of ASD and PedCon, we obtained r = 0.98±0.01 and r = 0.97±0.03, respectively. For

the measured data in ROIs of ASD and PedCon, we obtained r = 0.97± 0.02 and r = 0.96± 0.03

in Fig. 2 left panels. So the high correlation guarantees that our data matrix come from a normal

distribution. Using Lilliefors statistic, we statistically tested the Gaussian assumption. Since the

Lilliefors statistics of data matrix are mostly smaller than the cutoff values of 0.19 (ASD) and 0.29

(PedCon) at 1% level in Fig. 2 right panels, there is no reason not to assume normality for the

given data matrix, i.e. i.e., Xij ∼ i.i.d. N (0, 1).

4.3 Sparse Brain Connectivity Recovery under CS

For notational convenience, we replace X with 1√
pX. Then, the elements of X follows Xij ∼

N (0, 1/p) and X holds UUP with oversampling λ = log p. Now, based on the gaussianess of data

matrix X and lemma 1, we show that the measurement matrix A = (I⊗X) ∈ RN×P in (11) holds

UUP.

Denote AS and AS′ as submatrices formed by taking s and s′ column vectors from A (s′ ≤ s),

respectively. Submatrices XK and XK′ of X (k′ ≤ k) are defined by the same way. AS is a block

diagonal matrix (not a square matrix) of which block matrices are XK1 , . . . ,XKp with the number

of column vectors k1, . . . kp. The column vectors of all block matrices of AS are selected from XK

with replacement (k1, . . . , kp ≤ k ≤ s). To clarify the explanation, AS is illustrated in Fig. 1(c).

AS′ , a submatrix of AS , is constructed from XK′ in the same way. Note that A = I⊗X is a block

diagonal matrix of which diagonal term is repeatedly filled with X (see Fig. 1(c)). Subsequently
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λmin(A>A) = λmin(X>X) and λmax(A>A) = λmax(X>X) hold [44].

We use

 P

s′

 to indicate possible combinations of s′ objects from P objects. To see whether A

holds UUP, we should exhibit that all

 P

s′

 submatrices AS′ for all s′ (s′ ≤ s) satisfy (19) with

overwhelming probability. The smallest and largest eigenvalues of A>SAS are

λmin(A>SAS)=min
{
λmin(X>K1

XK1), . . . , λmin(X>Kp
XKp)

}
,

λmax(A>SAS)=max
{
λmax(X>K1

XK1), . . . , λmax(X>Kp
XKp)

}
.

Since the Gaussian ensemble X satisfies UUP according to lemma 1, for all subsets K ′ ⊂ K, we

obviously have

1
2
· n
p
≤ λmin(X>KXK) ≤ λmin(X>K′XK′)

≤ λmin(X>K′XK′) ≤ λmax(X>KXK) ≤ 3
2
· n
p

with overwhelming probability. Thus, λmin(A>SAS) and λmax(A>SAS) satisfy that

λmin(X>KXK) ≤ λmin(A>SAS)

≤ λmax(A>SAS) ≤ λmax(X>KXK).

Then, for all subsets S′ ⊂ S, the block matrices of AS′ come from XK′ (K ′ ⊂ K) and it holds that

1
2
· N
P
≤ λmin(A>SAS) ≤ λmin(A>S′AS′)

≤ λmin(A>S′AS′) ≤ λmax(A>SAS) ≤ 3
2
· N
P
,

where N = np and P = p2. Therefore, A holds UUP with same probability of X.

For this reason, we can tell that the sparse partial correlation obtained by LASSO is a near-

optimal solution under CS and the brain network recovery based on the partial correlation can be

theoretically guaranteed.
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5 Numerical Implementation

5.1 Data Description

5.1.1 Subjects

There are twenty six children with ASD (24 boys, mean age: 6.0 ± 1.8 years) and eleven children

with PedCon (8 boys, mean age: 9.73 ± 2.55 years). The ASD group, who was diagnosed by the

Korean version of Autism Diagnostic Interview-Revised (K-ADI-R) [51], was recruited from Child

and Adolescent Psychiatric Outpatient Clinic of Seoul National University Hospital, Seoul, South

Korea. The pediatric controls comprised as children who were failed to meet the criteria of any

psychiatric disorder and visited the clinic for IQ evaluation.

5.1.2 PET Image Data Acquisition

All PET scans were obtained from ECAT EXACT 47 (Siemens-CTI, Knoxville, USA) PET scanner

with an intrinsic resolution of 5.2 mm FWHM. PET images were 47 contiguous planes with a thick-

ness of 3.4 mm. After transmission scan measured by 68Ge rod sources for attenuation correction,

emission scan was administered. All participants were scanned under normal environmental noise

of scanner room. Image reconstruction was performed using a filtered back-projection algorithm

(Shepp-Logan filter at a cutoff frequency of 0.3 cycles/pixel as 128 × 128 × 47 matrices of size 2.1

× 2.1 × 3.4 mm).

5.1.3 Preprocessing

All PET data were preprocessed using Statistical Parametric Mapping (SPM 2, University College

of London, UK), implemented in the Matlab 6.5 (Mathworks Inc., USA) environment. After spatial

normalization to Korean Standard template space, mean FDG uptake within ROIs was extracted

using Statistical Probabilistic Anatomical Map-Korean version (SPAM-K) [52]. The values of FDG

uptake were globally normalized to the individual’s total gray matter mean count.

14



Figure 3: Partial correlation matrices of (a)-(c) ASD and (d)-(f) PedCon varying λ = 0, 1, 3 from

left to right. We checked the reproducibility and sparseness (zero elements) of partial correlation

during the leave-one-out cross validation. If the standard deviation of partial correlation obtained

by the cross validation is more than 0.1, we call it irreproducible and represent it by the purple

dots. We divided the reproducible partial correlation into zero and nonzero elements, which are

represented by the yellow and red dots. The ratio of 3 kinds of elements is shown as the pie chart.

15



5.2 Reproducibility of Brain Network

We applied the brain network recovery method to the 97 ROIs extracted from FDG-PET data. To

validate the recovered network, we checked the reproducibility of network obtained from different

datasets using the leave-one-out cross-validation. Since the number of ASD and PedCon data

was 26 and 11, respectively, the leave-one-out cross-validation produced 26 and 11 brain networks

(partial correlation matrices) of ASD and PedCon. Then, we estimated the standard deviation of

each partial correlation element in each group in order to observe its variation during the cross-

validation process. If the standard deviation is less than 0.1, we say that the partial correlation is

reproducible because it means that the partial correlation is consistent even though the given data

set in the same group is varied [53]. The reproducible partial correlation was divided into nonzero

and zero elements. So all elements of a partial correlation matrix in a group is classified into three

classes : irreproducible (purple), zero (yellow) and nonzero (red) as illustrated in Fig. 3. When λ

increases, the number of zero elements increases, i.e., the sparseness increases, but irreproducible

elements decrease (for λ = 1, 3, the number of nonzero elements are less than 1% and the number

of irreducible elements are near zero). The reproducible element can be thought as meaningful

connectivity because it appears consistently for varying data sets under certain conditions such as

ASD or PedCon. We conclude that the sparseness constraint helps to find the relevant connectivity

and our penalized linear regression method for partial correlation estimation recovers the near-

optimal brain network.

5.3 Visualization of Brain Network

A 3-dimensional brain network is difficult to visualize in 2 dimension. Therefore we embeded ROIs

in the 3-dimensional image in Fig. 4(a) into the 2-dimensional space in Fig. 4(b) by ISOMAP,

which is one of low dimensional embedding methods preserving the local structure such as the

distance between neighbors [54]. The color of node in Fig. 4 (a) and (b) represents the lobe where

the node belongs.

The well-known characteristics of ASD is local overconnectivity and global underconnectivity.

ASD has been mostly compared with the normal control by connectivities between or within lobes

[40, 38, 39, 55]. Hence, we hypothesized that (1) finding the modular structure of the estimated
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brain network helps to compare between ASD and PedCon and (2) the modular structure of ASD

network is more similar to the lobe structure than one of PedCon network. In other words, the

number of edges between lobes in ASD network is smaller than that of PedCon, while the number

of edges in a lobe of ASD network is larger than that of PedCon. After calculating the threshold

which maximizes the number of clusters and obtaining the thresholded partial correlation matrix,

we partitioned the ROIs (nodes) of graph by the agglomerative hierarchical clustering [56]. Fig. 4

(c) and (d) show that the clustered brain networks of ASD and PedCon. The color of nodes and

edge in Fig. 4 (c) and (d) represents the cluster where the nodes belong. The color of cluster is

selected by blending the node colors, which are determined by their located lobes in Fig. 4 (a) and

(b), in the cluster. So, if the cluster consists of nodes in the same lobe, the node color is identical

to one of Fig. 4 (b). We can see that the clustered brain network of ASD is more similar to the

lobe structure than the network of PedCon. In the next section, we seek the differences between

ASD and PedCon networks via a statistical inference.

5.4 Significance Test for Finding Group Differences

After constructing the thresholded partial correlation matrices of ASD and PedCon, we estimated

the number of (a) edges, (b) clusters, (c) edges connected between two ROIs in different lobes, and

(d) edges connected between two ROIs in same lobe and (e) the sum of anatomical distances of edges

in each network. Then, we compared them using the Wilcoxon rank sum test in Fig. 5. In each

panel of Fig. 5, the red box is for ASD and the blue box is for pedCon. When they were different at

significance level 0.01, we marked the asterisk (*) in each panel. Fig. 5 supports the hypothesis the

the autistic brain network has local overconnectivity and long-range underconnectivity compared to

the normal control [57]. Although the number of edges and clusters of ASD and PedCon were not

different in (a) and (b), the number of edges connected between lobes and the sum of anatomical

distances of edges were significantly larger than one of ASD in (c) and (e) (p < 0.001), while the

number of edges connected within a lobe of PedCon was significantly smaller than one of ASD in

(d) (p < 0.001).

We also estimated the number of edges connected between each pair of 7 lobes, frontal, sub-

cortical, limbic, temporal, parietal, occipital and limbic lobes, and the number of edges connected

in each lobe. Then, we compared them using the Wilcoxon rank sum test in Fig. 6. In each
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Figure 4: Visualization of ROIs in (a) 3-dimensional and (b) 2-dimensional space. ROIs in the

3-dimensional space are embedded to the 2-dimensional space by ISOMAP, which preserves the

distance between nodes during the low dimensional embedding. Each lobe is represented by different

color as shown in colorbar (a). Clustered brain networks for (c) ASD and (d) PedCon. In these

figures, the color represents the cluster.
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Figure 5: Significance tests on (a) the number of edges (p = 0.5489), (b) the number of clusters

(p = 0.0406), (c) the number of edges connected between lobes (p < 0.001), (d) the number of edges

connected in lobe (p < 0.001), and (e) sum of anatomical length of edges (p < 0.001). The red box

in the left is for autism and the blue box in the right is for PedCon. The asterisk (*) represents the

significant difference obtained by the Wilcoxon rank sum test with the significance level p < 0.01.

panel, the vertical axis represents the number of edges and the horizontal axis represents groups,

ASD and PedCon. The red box and the blue box are for ASD and PedCon, respectively. The

asterisk (*) was marked when p < 0.01. The smaller the p-value under each panel is, the more

different the connectivity between ASD and PedCon is. According to Fig. 6, the local overcon-

nectivity was found in ASD children than control children, especially within frontal, occipital,

subcortical,temporal, and limbic lobes (p < 0.01). Also, long-range underconnectivity patterns

between lobes were observed in ASD children as follows: frontal-parietal (p < 0.001), frontal-

limbic (p < 0.001), parietal-occipital (p < 0.05), parietal-limbic (p < 0.05), parietal-subcortical

(p < 0.001), occipital-temporal (p < 0.001), occipital-subcortical (p < 0.01), cerebellum-temporal

(p < 0.005), temporal-limbic (p < 0.001), temporal-subcortical (p < 0.001), and limbic-subcortical

(p < 0.001). Functional underconnectivity between frontal and parietal regions in ASD was quite

consistent with other studies, because it is associated with deficits of planning and problem solving

in ASD [41]. Frontal mirror neuron system was suggested to mediate understanding of the other’s

emotional states in concert with limbic center, such as amygdala. This emotional dysfunction in

ASD children might be explained through the abnormal connectivity between frontal and limbic

system [58]. The occipital regions showed reduced functional connectivity with the temporal re-

gions, which was associated with impairment of mentalizing in ASD [59]. Abnormal behavioral

phenotypes in ASD could be involved in these long-range dysconnectivities.

19



Figure 6: Significance on the number of edges within a lobe and between lobes. The lobes consist

of frontal, parietal, limbic, occipital, subcortical and temporal lobes. In each panel, the vertical

axis indicates the number of edges and the horizontal axis indicates groups (ASD and PedCon).

The red box is for ASD and the blue box is for PedCon. Under each panel, there is the p-value

obtained by the Wilcoxon rank sum test for measuring the differences between two groups. If the

difference is significant, we indicated it with the asterisk (*).
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6 Conclusion and Discussion

In this paper, we showed that correlation and partial correlation can be formulated in the linear

regression framework. Partial correlation is widely used for connectivity estimation, especially,

for the highly correlated network, because it estimates true relationship between two nodes by

factoring out the redundant dependences on other nodes. However, the main difficulty of brain

network modeling based on partial correlation is that, because of the insufficient number of scans

(small n) compared to the complexity of network (large p), the partial correlation is unreliably

estimated. To remedy the small-n large-p problem, the penalty term for the sparseness constraint

is usually introduced and added to the linear regression model. The penalized linear regression,

a.k.a. LASSO, can naturally lead to the sparse brain network construction as we have shown.

Under the CS defined in the linear model framework, UUP guarantees that the exact sparse signal

recovery even from small number of noisy measurements. By appropriating UUP of Gaussian

ensemble, we demonstrated that the proposed method can estimate partial correlations reliably

and recover the sparse brain network. The numerical experiments show that the obtained sparse

brain network is consistent for different datasets in the same group and our ASD network has local

overconnectivity and long-range underconnectivity as already known in the autism-related clinical

studies [38, 39, 55].

Appendix

7 Proof of Correlation and Partial Correlation in linear model (6)

and (8)

The loss function of correlation coefficient in (6) is given by

Lcorr(αij ,f i,f j) = ‖ f i − αijf j ‖2 (20)

= (f i − αijf j)>(f i − αijf j)

= (f>j f j)α
2
ij − 2(f>i f j)αij + (f>i f i).
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266666666666664

cov(f i,f1)

...

cov(f i,f i−1)

cov(f i,f i+1)

..

.

cov(f i,fp)

377777777777775

>

=

266666666666664

βi1

...

βi,i−1

βi,i+1

...

βip

377777777777775

>266666666666664

cov(f1,f1) . . . cov(f1,f i−1) cov(f1,f i+1) . . . cov(f1,fp)

...
. . .

...
...

. . .
...

cov(f i−1,f1) . . . cov(f i−1,f i−1) cov(f i−1,f i+1) . . . cov(f i−1,fp)

cov(f i+1,f1) . . . cov(f i+1,f i−1) cov(f i+1,f i+1) . . . cov(f i+1,fp)

...
. . .

...
...

. . .
...

cov(fp,f1) . . . cov(fp,f i−1) cov(fp,f i+1) . . . cov(fp,fp)

377777777777775
(6)

The optimal solution minimizing (20) is easily obtained by

αij =
f>i f j

f>j f j
=

√
f>i f i
f>j f j

f>i f j√
f>i f i f

>
j f j

=

√
f>i f i
f>j f j

ρij .

We assume that f>i f i = 1 for all i = 1, . . . , p. Thus, αij is equal to ρij in (2).

Minimizing the loss function of partial correlation in (7) is equal to minimizing the correlation

between residuals and data vectors except the i-th data vector as follows :

min
βi

‖ f i −
∑
j 6=i

βijf j ‖2⇔



cov(f i −
∑

j 6=i βijf j ,f1) = 0
...

cov(f i −
∑

j 6=i βijf j ,f i−1) = 0

cov(f i −
∑

j 6=i βijf j ,f i+1) = 0
...

cov(f i −
∑

j 6=i βijf j ,fp) = 0

(21)

We can rewrite (21) to a matrix form in (6).

The covariance matrix Σ of data matrix X = [f1 . . .fp]> is Σ = [σij ] = [cov(f i,f j)]. Then, the

leftmost matrix in (6) is the matrix eliminating the i-th column and row vectors from Σ, which

is denoted by Σ∼i. Exchanging the first row and column with the i-th row and column, we can
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rewrite the covariance matrix Σ as

Σ=



σii σi1 . . . σi,i−1 σi,i+1 . . . σip

σ1i σ11 . . . σ1,i−1 σ1,i+1 . . . σ1p

...
...

. . .
...

...
. . .

...

σi−1,i σi−1,1 . . . σi−1,i−1 σi−1,i+1 . . . σi−1,p

σi+1,i σi+1,1 . . . σi+1,i−1 σi+1,i+1 . . . σi+1,p

...
...

. . .
...

...
. . .

...

σpi σp1 . . . σp,i−1 σp,i+1 . . . σpp


=

 σii σi,∼i

σ∼i,i Σ∼i

 ,
where σi,∼i = [σ1i σ11 . . . σ1,i−1 σ1,i+1 . . . σ1p] and σ∼i,i = σ>i,∼i. The inverse of covariance matrix

Σ is denoted by

Π = Σ−1 =

[
πii πi,∼i

π∼i,i Π i

]
.

According to the rule of inverse of a partitioned matrix,

πi,∼i = −(1− σi,∼iΣ−1
∼iσ∼i,i)

−1σi,∼iΣ−1
∼i

= −πiiσi,∼iΣ−1
∼i .

Revisiting (6), we can write down in the matrix form :

σi,∼i = βi,∼iΣ∼i.

Then,

βi,∼i = σi,∼iΣ−1
∼i

= −πi,∼i/πii.

Therefore, (8) holds.

8 Algorithms for Estimating Sparse Correlation Coefficient and

Partial Correlation in the Penalized Linear Model (16) and (17)

The coordinate descent learning and the active-set algorithm are applied to determine solutions to

minimize (16) and (17), [27, 47].
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Derivatives of objectivite function (16) with respect to the correlation coefficient ρi are given by

∂(16)
∂ρij

= −f>i f j + ρi + λ, for ρij > 0,

∂(16)
∂ρij

= −f>i f j + ρi − λ, for ρij < 0.

Then,

ρij = αij =
[
f>i f j , λ

]
+
,

where

[a, b]+ =


a− b if a > 0 and |a| > b

a+ b if a < 0 and |a| > b

0 if |a| ≤ b

.

Actually, the sparse correlation is same with the thresholded correlation with the thresholding

constant λ. λ can be obtained by the piecewise linear solution paths [60].

Derivatives of objective function (17) for the partial correlation with respect to θij fixed πii are

given by

∂(17)
∂θij

=
1
n

n∑
t=1

fti −∑
k 6=i,j

θik

√
πkk
πii

ftk − θij
√
πjj
πii

ftj

(−√πjj
πii

ftj

)
+ λ

=
(
πjj
nπii

f>j f j

)
θij −

1
n

√
πjj
πii
f>i f j +

wi
n

∑
k 6=i,j

θik

√
πkkπjj

πii
f>k f j + λ

for θij > 0, and

∂(17)
∂θij

=
1
n

n∑
t=1

fti −∑
k 6=i,j

θik

√
πkk
πii

ftk − θij
√
πjj
πii

ftj

(−√πjj
πii

ftj

)
− λ

=
(
πjj
nπii

f>j f j

)
θij −

1
n

√
πjj
πii
f>i f j +

1
n

∑
k 6=i,j

θik

√
πkkπjj

πii
f>k f j − λ.

for θij < 0. Then,

θij =

[
1
n

(
f>i f j −

∑
k 6=i,j θik

√
πkkπjj

πii
f>k f j

)
, λ
]
+

πjj

nπii
f>j f j

. (22)

The outline of algorithm for the sparse inverse covariance estimation using the linear regression

is as follows :
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Input : X =
[
f1...fp

]
∈ Rn×p, λ

Output : θ ∈ Rp×p, π ∈ Rp

Step 1 Normalize the data matrix X.

Initialize [θij ]i,j=1,...,p(i<j) and [πii]i=1,...,p.

Step 2 For i = 1, ..., p and j = i+ 1, ..., p,

Update θij in (22).

Repeat until convergence.

Step 3 For i = 1, ..., p,

Estimate εi = f i −
∑

j 6=i βijf j and πii = 1/var(εi).

Step 4 Repeat step 2 and 3 until convergence.

We assume that πii = 1 (i = 1, ..., p) for computational simplicity. To reduce computational

complexity, Friedman and Peng exploited the active set algorithm [27, 47]. Step 2 of above algorithm

is changed to as follows :

Step 2* Active set algorithm

2.1 Construct the current active set Λ = {(i, j)| current θij 6= 0}.

2.1.1 Update θij (i, j) ∈ Λ in (22).

2.1.2 Repeat updating until convergence.

2.2 For i = 1, ..., p and j = i+ 1, ..., p, update θij in (22).

2.3 Repeat Step 2* until convergence.

Acknowledgment

This work was supported by WCU-grant from the government of Korea to the Department of Brain

and Cognitive Sciences, Seoul National University and grant No. R31-2008-000-10103-0 from the

WCU project of the MEST and the NRF. Also, by the National Research Foundation of Korea

Grant funded by the Korean Government [NRF-2009-351-D00026]. This study was approved by

the institutional review board of Seoul National University College of Medicine. We thank Jiho

Yoo for helpful discussions and comments.

25



References

[1] O. Sporn and J. Zwi, “The small world of the cerebral cortex,” Neuroinformatics, vol. 2, pp.

145–162, 2004.

[2] V. Eguiluz, D. Chialvo, G. Cecchi, M. Baliki, and A. Apkarian, “Scale-free brain functional

networks,” Physical Review Letters, vol. 94, p. 018102, 2005.

[3] C. Stam, “Functional connectivity patterns of human magnetoencephalographic recordings :

a small-world network?” Neuroscience Letters, vol. 355, pp. 25–28, 2004.

[4] C. Stam, B. Jones, G. Nolte, M. Breakspear, and P. Scheltens, “Small-world networks and

functional connectivity in alzheimers disease,” Cerebral Cortex, vol. 17, pp. 92–99, 2007.

[5] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A resilient, low-frequency,

small-world human brain functional network with highly connected association cortical hubs,”

Journal of Neuroscience, vol. 26, pp. 63–72, 2006.

[6] R. Salvador, J. Suckling, M. Coleman, J. Pickard, D. Menon, and E. Bullmore, “Neurophysio-

logical architecture of functional magnetic resonance images of human brain,” Cerebral Cortex,

vol. 15, pp. 1332–1342, 2005.

[7] Y. He, Z. Chen, and A. Evans, “Small-world anatomical networks in the human brain revealed

by cortical thickness from MRI,” Cerebral Cortex, vol. 170, pp. 2407–2419, 2007.

[8] Z. Chen, Y. He, P. Rosa-Neto, J. Germann, and E. A.C., “Revealing modular architecture of

human brain structural networks by using cortical thickness from MRI,” Cerebral Cortex, pp.

2374–2381, 2008.

[9] M. Valencia, M. Pastor, M. Fernandez-Seara, J. Artieda, J. Martinerie1, and M. Chavez,

“Complex modular structure of large-scale brain networks,” Chaos, vol. 19, 2009.

[10] P. Laurienti, C. Hugenschmidt, and S. Hayasaka, “Modularity maps reveal community struc-

ture in the resting human brain,” Nature Precedings, 2009.

[11] D. Bassett, “Small-world brain networks,” The Neuroscientist, vol. 12, pp. 512–523, 2006.

[12] M. Rubinov and S. O., “Complex network measures of brain connectivity: Uses and interpre-

tations,” NeuroImage, p. in press, 2009.

26



[13] O. Sporns, G. Tononi, and R. Kotter, “The human connectome: a structural description of

the human brain,” PLoS Computational Biology, vol. 1, 2005.

[14] J. Cao and K. Worsley, “The geometry of correlation fields with an application to functional

connectivity of the brain,” Annals of Applied Probability, vol. 9, pp. 1021–1057, 1999.

[15] M. Koch, D. Norris, and M. Hund-Georgiadis, “An investigation of functional and anatomical

connectivity using magnetic resonance imaging,” NeuroImage, vol. 16, pp. 241–250, 2002.

[16] G. Marrelec, A. Krainik, H. Duffau, M. Pélégrini-Issac, S. Lehéricy, J. Doyon, and H. Be-
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