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ABSTRACT

Sparse partial correlation is a useful connectivity measure for brain networks, especially, when it is hard to
compute the exact partial correlation due to the small-n large-p situation. In this paper, we consider a sparse
linear regression model with a l1-norm penalty for estimating sparse brain connectivity based on the partial
correlation. For the numerical experiments, we construct the sparse brain networks of 97 regions of interest
(ROIs) extracted from FDG-PET data for the autism spectrum disorder (ASD) children and the pediatric control
(PedCon) subjects. To validate the results, we check their reproducibilities by leave-one-out cross validation and
compare the clustered structures derived from the brain networks of ASD and PedCon.
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1. INTRODUCTION

The majority of connectivity analyses in brain imaging has been on thresholding correlation in detecting focal
regions of correlated voxels. The main limitation of connectivity analyses based on correlation is that they fail
to explicitly factor out the confounding effect of other regions. To remedy this limitation, partial correlation has
been naturally introduced. Unfortunately, this type of problem usually belongs to the small-n large-p setting so
it is not feasible to estimate the exact partial correlation. So far the majority of literature have used the penalized
likelihood method in imposing the sparseness on the partial correlation estimation.1 In this paper, we introduce
a different approach based on the penalized linear regression for estimating sparse partial correlation.2 The
penalized linear regression with l1-norm, which is also known as least absolute shrinkage and selection operator
(LASSO), is usually formulated as the convex optimization to find the sparsest solution of the under-determined
linear regression problem.3

The proposed model is applied to the 97 regions of interest (ROIs) extracted from FDG-PET data for 26
autistim spectrum disorder (ASD) children and 11 pediatric control (PedCon) subjects. It is generally known
that ASD has the global patterns of underconnectivity and the local patterns of overconnectivity in the key brain
regions. The differences between ASD and PedCon are mostly found in connectivities between lobes, especially,
connection between secondary association cortices such as frontal and parietal regions.4, 5 Dense internal and
sparse external linkages are properties of a cluster (also called a community or module). Thus, after estimating
the partial correlation matrices by the penalized linear regression, we seek the modular structures of ASD and
PedCon brain network and observe their differences based on the lobe structures.
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2. DATA ACQUISITION AND PREPROCESSING

There are twenty six children with ASD (24 boys, mean age: 6.0 ± 1.8 years) and eleven children with PedCon
(8 boys, mean age: 9.73 ± 2.55 years). All PET scans were obtained from ECAT EXACT 47 (Siemens-CTI,
Knoxville, USA) PET scanner with an intrinsic resolution of 5.2 mm FWHM. PET images were preprocessed
using Statistical Parametric Mapping (SPM) package. After spatial normalization to the standard template
space, mean FDG uptake within 97 ROIs were extracted. The values of FDG uptake were globally normalized
to the individual’s total gray matter mean count.

3. SPARSE BRAIN NETWORK ESTIMATION

We formulate the sparse brain connectivity based on partial correlation in the penalized linear regression frame-
work.

3.1 The Penelized Linear Regression for Estimating the Partial Correlation

Suppose that
{

f1, . . . ,fp

}

is the n-dimensional data vector measured at the p selected ROIs on the FDG-PET
images of n subjects. We assume f i are centered and normalized. It is known that the partial correlation is
estimated by the linear regression estimation as follows2 :

f i =
∑

j 6=i

βijf j + ǫi, for i = 1, ..., p, (1)

where ǫi is uncorrelated with all variables except f i and βij is the measure of relationship between data vectors
f i and f j given all other data vectors. When var(ǫi) = (1/πii) and cov(ǫi, ǫj) = πij/(πiiπjj), the partial

correlation θij is given by θij = −πij/
√
πiiπjj = βij

√

(πii/πjj).

Now we change the linear model in Eq.(1) to a matrix form x = Ab as shown in Fig.1. Note that the
elements of X follows Gaussian distribution with mean 0 and variance 1 because its column vectors are centered
and normalized. When n ≪ p, estimating the partial correlation in the linear model x = Ab fall under a
high-dimension-small-sample-size situation. Thus, we should consider shrinkage methods to regularize the model
parameters and one solution is to add the sparseness penalty such as l1 norm to the model parameters like

b̂ = argmin
b

‖ x−Ab ‖22 +λ ‖ b ‖1 (2)

where ‖ · ‖1 is a l1 norm (sum of absolute values of elements) and λ is the regularization parameter. It is known
as LASSO. To solve the problem, we exploited the coordinate descent learning and the active-set algorithm.2

3.2 Validating the Estimated Network

To validate the constructed network, we checked the reproducibility of the network obtained from different
datasets using the leave-one-out cross-validation (see Fig.1). When λ increases, zero elements (the sparseness)
increase, but irreproducible elements decrease (its number is near zero). Thus, we can tell that our penalized
linear regression method for the partial correlation estimation finds the consistent brain connectivity.

4. SIGNIFICANCE TEST FOR FINDING GROUP DIFFERENCES

After calculating the threshold which maximizes the number of clusters, we partitioned the ROIs (nodes) of graph
by the agglomerative hierarchical clustering (see Fig.2(c),(d)). Fig.3 supports that the autism brain network has
local overconnectivity and long-range underconnectivity compared to the normal control, because, although the
number of edges and clusters of ASD and PedCon were not different, the number of edges connected between
lobes and the sum of anatomical distances of edges were significantly larger than one of ASD , while the number
of edges connected within a lobe of PedCon was significantly smaller than one of ASD.



Figure 1. Partial correlation matrices of (a)-(c) ASD and (d)-(f) PedCon varying λ = 0, 1, 3 from left to right. If the
standard deviation of the partial correlation elements obtained by cross validation is more than 0.1, we call it irreproducible
elements and represent by the purple dots. We divided the reproducible partial correlations into zero and nonzero elements,
which are represented by the yellow and red dots. The ratio of 3 kinds of elements is drawn in the pie chart.



Figure 2. Visualization of ROIs in (a) 3-dimensional and (b) 2-dimensional space. Each lobe is represented by different
color as shown in colorbar (a). Clustered brain networks for (c) ASD and (d) PedCon. In these figures, the color represents
the cluster. The color of nodes in (c) is more similar to one in (b).

Figure 3. Significance tests on the number of (a) edges (p = 0.5489), (b) clusters (p = 0.0406), (c) edges connected between
lobes (p < 0.001) and (d) edges connected in lobe (p < 0.001) and (e) sum of anatomical length of edges (p < 0.001). The
red box in the left is for autism and the blue box in the right is for PedCon. The asterisk (*) represents the significant
difference obtained by the Wilcoxon rank sum test with the significance level p < 0.01.
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