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ABSTRACT

It is known that the brain network has a small-world and
a scale-free topology, but the network structures drastically
change depending on how to threshold a connectivity matrix.
The exact threshold criterion is not yet known. In this pa-
per, we propose to look at the topological changes of brain
network while varying the threshold continuously instead
of trying to determine one fixed threshold. This process of
continuously changing threshold level and looking at the
resulting topological feature is related to the Rips filtration
on brain network in persistent homology. The sequence of
topological features obtained during Rips filtration can be
visualized and interpreted using barcode.

As an illustration, we apply Rips filtration to construct
brain networks consisting out of FDG-PET data for 24 at-
tention deficit hyperactivity disorder (ADHD) children, 26
autism spectrum disorder (ASD) children and 11 pediatric
control subjects. We visually show the topological evolu-
tion of each brain network using the barcode and perform
statistical inference testing on differences. This is the paper
that deals with the persistence homology of various brain net-
works.

Index Terms— Brain Network, Thresholding, Persistent
Homology, Rips Complex, Barcode

1. INTRODUCTION

The functional and anatomical connectivity studies of human
brain has given us new understanding of the characteristics
of brain, from a microscale connectivity between single neu-
rons to a macroscale connectivity between regions of interest
(ROI) in whole brain images. The connectivity matrix is an
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algebraic representation of the weighted brain network, which
shows the relationship between all paired nodes. Since the in-
terpretation of weighted graph is somewhat complicated, we
usually binarize the connectivity matrix into an adjacencyma-
trix by thresholding the connectivity matrix.

So far the global topological characteristics of brain net-
work, such as small-world network, has been mainly studied
but recently, the local structure of brain network, i.e., modu-
larity, has started to draw attention [1]. However, most graph
theoretic measures such small-worldness and modularity can
quantify only one aspect of brain network at a fixed threshold.
In this paper, we propose to look at the topological changes of
brain network for every possible thresholds, rather than trying
to determine one fixed threshold that may or may not be the
proper one. We mathematically demonstrate that the changes
of network structure when varying threshold of correlation
matrix can be exactly observed by finding the evolutionary
history of the topological changes of Rips complex. Thus,
we can borrow various algebraic topology tools such as bar-
codes and persistent diagrams for representing the sequence
of topological features [2, 3]. Although the idea of persistent
homology has already been applied to medical image analysis
[4, 2], this is the first study modeling brain networks using the
persistent homology.

The proposed methods are applied to functional brain
network with 97 regions of interest (ROIs) extracted from
FDG-PET data for 24 attention-deficit hyperactivity disorder
(ADHD), 26 autism spectrum disorder (ASD) and 11 pedi-
atric control (PedCon). Numerical experiments shows that
their topological changes through varying threshold can be
visualized by persistent homology, the 0-th Betti number, and
barcodes and they are significantly different between groups.

2. THRESHOLDING CONNECTIVITY

Suppose that the data
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, measured at thep se-
lected regions in the FDG-PET images. We assumef i is
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Fig. 1. The changes of brain network for varying thresholds. The blue, red and green lines in lower panel represent the number
of edges, the number of connected components and small-worldness. The dot-solid, solid, dot-dashed and dashed lines inlower
panel are for random graph, ADHD, ASD and PedCon networks, respectively. By varying the threshold, the brain network is
changed to like random-like, small-world and clustered network. The colors in the clustered network indicates the clusters. The
darker color in the adjacency matrices represents highly connected nodes.

centered and normalized so that correlation matrix is simply
given byΣ = [ρij ] = [f⊤

i f j ]. In the usual connectivity
analysis framework, the adjacency matrix is subsequently ob-
tained by thresholding the correlation matrix.

Finding the proper threshold is one of the most important
issues in network modeling. There are various methods for
determining the threshold based on the statistical significance
by the false discovery rate (FDR) or fixing the graph metrics
such as number of edges and nodes. However, these methods
are fairly ad-hoc and everyone seem to use different thresh-
olding techniques. This arbitrariness is demonstrated in Fig.
1, where the small-worldness (green lines), the number of
edges (blue lines) and the number of connected components
(red lines) substantially change depending on the threshold.
According to the threshold, the resulting network graph has
very different topological structures: random, small-world
and clustered networks [5].

3. PERSISTENT HOMOLOGY

Instead of trying to determine one proper threshold that may
not really proper, we decided to look at the over all change

of topological structure over whole range of threshold using
persistent homology.

Consider a setF consisting ofp point cloud data. We
connect two point cloud datai andj by an edge if the dis-
tance between the nodesd(i, j) < ǫ. The generated graph is
a Rips complexand denoted by Rips(F , ǫ). The topological
informations of Rips complex are encoded into an algebraic
form, known as aBetti number, where the0-th Betti num-
ber (β0) counts the number of connected components in the
graph. Fig.2 (a)-(j) show a toy example of constructed Rips
complices with differentǫ. The radius of circle around each
dot isǫ. If two dots are in same circle, they are connected (red
lines).

Since it can be easily seen that Rips(F , t) ⊂ Rips(F , s)
whenevert ≤ s. Observing the topological transition by in-
creasing the filtration valueǫ is called as aRips filtrationand
is the main theme inpersistent homology. During the filtra-
tion, the topological features such as the connected compo-
nents is created and disappeared. These can be visualized by
either using the persistent diagram orbarcode. In the barcode,
the vertical axis represents an ordering of homology genera-
tors of the Betti number and the horizontal axis corresponds



Fig. 2. Example of Rips filtration varying the filtration valueǫ (upper panels) and its barcode (the lower panel). The black dot
represents the point cloud data which are connected (red line) when two nodes are in the same circle with radiusǫ. The lower
panel is a barcode where the horizontal and vertical axes represent the filtration value and the connected components.

to the filtration value. Atǫ = 0, there is no connection and
the number of connected components is simply the number of
nodes. Since there are 10 dots in Fig.2 (k), the barcode starts
at the height 10. Atǫ = 21, two connected components are
merged into a single connected component and one compo-
nent disappears so the barcode stops atǫ = 21. In this way,
all nodes are connected for sufficiently large filtration valueǫ
and, finally, only one single connected component remains.

In the case of the brain network, we havep measurements
F =

{
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obtained fromp regions, which serve
as point cloud to be connected. The distance between two
nodesi andj are defined not in the space where the nodes
are residing but in the space where the measurements are de-
fined. We denote this distance asd(f i,f j) and link them if
d(f i,f j) < ǫ. One possible distance measure we can use is

d(f i,f j) = 1− corr(f i,f j),

the correlation betweenf i andf j . We may consider only
positive correlations. The distance betweenf i andf j gets
smaller as the correlation increases between them. We con-
struct Rips complex, Rips(F , ǫ) by connecting all nodes with
the correlation larger than specific thresholdǫ. The con-
structed Rips complex is then exactly identical to the network
connected by thresholding the correlation matrix. Therefore,
the Rips filtration, a sequence of Rips complexes, is a more

general framework than the usual connectivity matrix thresh-
old method. The underlying topological change in the Rips
filtration of the brain network is then encoded in the barcode.

4. RESULTS

The data consists of 24 ADHD, 26 ASD and 11 PedCon. PET
images were preprocessed using Statistical Parametric Map-
ping (SPM) package. After spatial normalization to the stan-
dard template space, mean FDG uptake within 97 ROIs were
extracted. The values of FDG uptake were globally normal-
ized to the individual’s total gray matter mean count.

The barcodes of ADHD (red bars), ASD (green bars) and
PedCon (blue bars) networks with the0-th Betti number are
shown in Fig.3. Common underconnectivity and local over-
connectivity in ASD [6] and ADHD [7] groups compared to
control group are observed. The barcode changes faster in
PedCon than other groups. It implies that the brain networks
of ASD and ADHD groups might be more difficult to be
merged into a giant connected component which connects
all ROIs when the filtration value increases. The filtration
values at which all connected components are created are
identical so we only checked whether the death time of con-
nected components are different between ADHD, ASD and
PedCon networks using 1000 permutation test. The topo-



logical changes of connected components during filtration
(threshold) are significantly different between ADHD-ASD,
ADHD-PedCon and ASD-PedCon at the 5% level.

5. CONCLUSIONS

So far researchers are mainly concerned with the global
characteristics of brain network such as small-worldness
and scale-freeness. Such characteristics are one property
of complex brain network at a certain threshold and does
not completely characterize the network. By tabulating the
topological changes for all possible threshold, we can ob-
tain a more complete characterization of the network. We
have shown that these characterization can be represented by
barcodes in persistent homology.

We have applied the proposed method in global charac-
terization of ADHD, ASD and PedCon. The differences be-
tween the connectivities between ADHD and ASD groups are
found in the local connectivity structures. However, sincethe
algebraic topology approach is coordinate-free, we can’t com-
pare which parts of connected components are disappeared
earlier or not. Finding the topological information combined
with the location information of node is remained as a future
work.
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Fig. 3. Barcode of the 0-th Betti numberβ0. The horizontal
axis represents the filtration value. The vertical axis repre-
sents the index of connected component. Each bar is started
and ended while each connected component is appeared and
disappeared during the filtration. The red, green and blue bar
are for ADHD, ASD and PedCon.
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