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ABSTRACT 

Diffusion tensor imaging (DTI) measures, such as fractional 
anisotropy (FA), and trace are very sensitive to noise 
contained in the acquired diffusion weighted images. 
Typical isotropic smoothing methods reduce the high spatial 
frequency image content and blur the image features. We 
hypothesized that the diffusion tensor would be an 
approximate anisotropic Gaussian filter function because the 
blur will tend to be oriented parallel to the white matter 
structures. Thus, we implemented and evaluated an 
anisotropic Gaussian kernel smoothing method based on the 
diffusion tensor for preserving diffusion tensor structural 
features while significantly reducing the noise. We 
compared the diffusion tensor anisotropic filtering with 
isotropic Gaussian filtering, and a Perona-Malik (PM) 
filtering algorithm, which was derived from the intensity 
gradients of diffusion weighted images. Human brain DTI 
data with high SNR was used as a gold standard for 
evaluation. Overall, the anisotropic filters performed 
similarly, with slightly better performance using the DT 
anisotropic filter across the whole brain.

1. INTRODUCTION 

Diffusion tensor MRI (DT-MRI) is a non-invasive imaging 
method for assessing the characteristics of tissue 
microstructure. The number and breadth of DT-MRI 
applications are rapidly expanding.  Unfortunately, diffusion 
tensor measurements are also highly sensitive to noise in the 
raw images [6] and, the variance of DT-MRI measures may 
impair the ability to detect and characterize subtle 
differences between regions or subjects. 
Image filtering and smoothing methods may be used to 
reduce noise in medical images.  However, certain types of 
smoothing may also blur important image features and the 
edges of structures.   

Fine image features and edges may be preserved using 
anisotropic diffusion filtering methods such as Perona-Malik 
(PM) algorithm [5]. PM filter was originally developed for 
scalar images and methods for smoothing DT-MRI data may 
require more complex approaches than scalar image 
smoothing methods, because the diffusion tensor image data 
is multidimensional and represents spatially coherent 
directional information by the eigenvectors and eigenvalues. 
Recently, several studies have investigated methods for 
filtering DT-MRI data. Parker et al. [4] applied PM 
algorithm to the raw, diffusion-weighted scalar images prior 
to calculation of the diffusion tensor and associated 
measures. Pajevic et al. used a B-spline interpolation 
method to regularize the diffusion tensor field [6]. More 
recently, several investigators have applied constrained 
variational principles to the full diffusion tensor data with 
promising results (Tschumperle et al. [7]; Coulon et al. [2]; 
Wang et al. [8]).  However, these approaches have not been 
widely used because they are relatively complex and the 
computational demands can be high.  Chung et al. proposed 
using the diffusion tensor at each voxel as the anisotropic 
diffusion kernel [1].  The application of the diffusion tensor 
as the filter kernel will inherently smooth the data more in 
the direction of greatest diffusivity, which is generally 
parallel to the orientation of white matter tracts in the brain.  
Conversely, in gray matter areas, which demonstrate more 
isotropic diffusion, the smoothing will also be more 
isotropic.   
In this paper, anisotropic kernel smoothing approaches 
similar to those described by Chung et al. are compared 
against isotropic Gaussian smoothing and the Perona Malik 
filtering algorithm.  The performance of this spatial filtering 
method is evaluated using a root mean square error (RMSE) 
that represents the accuracy and variance of diffusion tensor 
measures.  DTI measurements in a human brain are used to 
evaluate the filter performance.  Finally, several 
implementations of the DTI anisotropic filter are evaluated.   
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2. THEORY 

2.1. Gaussian Kernel Smoothing 

A single 3D image smoothing operation may be described 
using the convolution 

iti
SKS ⊗=+1

                                     [Equation 1] 

where Si and Si+1 are the signals for the ith and (i+1)th 
iterations ( S0 is the original unfiltered image) respectively, 
and Kt is the convolution kernel.  
The subscript t is called diffusion time or the bandwidth of 
the kernel. The effective convolution kernel size may be 
increased by repeated convolution 

tttttn
KKKKK ⊗⊗⊗= ...      (n times)        [Equation 2] 

For many image processing applications, an isotropic 
Gaussian kernel is used for smoothing 
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where r  is the position vector, and σ is the standard 

deviation of the distribution )(rK in the three dimensional 

case.  However, isotropic filters are completely non-specific 
and will blur signals between neighboring voxels regardless 
of the local tissue organization.  The diffusion tensor is a 
model of Gaussian diffusion and the major orientation in 
white matter is parallel to the local tract organization.  

Consequently, the diffusion tensor, D , may be used to 
create a more tissue specific smoothing kernel  
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for convolution image smoothing.  This is a solution to the 
diffusion equation in the three-dimensional at diffusion time 
t .
The anisotropy of the diffusion tensor may be accentuated 

by raising the diffusion tensor to a higher power, PD .
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This is achieved by multiplying D by itself p times. Figure 
1 demonstrates how diffusion tensor based Gaussian kernel 
represents anisotropic profile as opposed to the isotropic 
Gaussian profile. In this study, p=0 (isotropic), and 3 were 
tested. 

2.2. Perona Malik Algorithm 

The Perona Malik algorithm is based on the diffusion 
equation 
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                         [Equation 6]   

, where I∇ is the image intensity gradient and g is a 

diffusion function that should be in inverse relationship with

I∇ such as  

])/exp[()( 2KIIg ∇−=∇               [Equation 7] 

from Parker et al [4]. 

                        a                                b          

Figure 1.  Example of smoothing kernels (x-y plane only) 
for a voxel in the corpus callosum for (a) isotropic Gaussian 
smoothing i.e. p=0, and (b) p=3 anisotropic kernels.  The 
anisotropic kernels show increased preferential smoothing in 
the x direction, which is parallel to the WM structure of the 
corpus callosum. 

3. METHODS 

3.1. DTI Acquisition 

A single-shot spin echo EPI sequence with diffusion-tensor 
encoding (12 directions, b=1000s/mm2), was used to get 
four sets (identical slice locations, voxels = 0.8984 x 0.8984 
x 1.8mm3, 54 slices, 3 NEX, 23 cm FOV) DTI data from a 
single subject. “Gold standard” FA images were estimated 
by averaging all four sets of diffusion weighted images. 

3.2. Evaluation of Anisotropic Smoothing 

Isotropic, anisotropic Gaussian smoothing kernel with 
power 3 [Equation 5] and PM filter, were applied 
independently to each of the four data sets.  Various kernel 
widths were investigated by using the iterative convolution 
in [Equation 2] up to 10 times with a range of initial t-value 
[0.05, 2.0], and we found the optimum t- value for each 
filter, 8.0=t  for Gaussian filter, and 2.0=t for PM filter. 
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Each optimum filter reaches the minimum RMSE. Filtering 
was applied to the diffusion-weighted (DW) maps.  
The effects of these image filters on maps of FA were 
evaluated.  The error at each voxel for each iteration, i, was 
quantified as the root mean square error between the gold 

standard maps, x~ , and the smoothed data, 
i

x̂ ,

( ) >−<= ∑
2ˆ~

ii xxRMSE     [Equation 8] 

In this study, the effects of filtering on maps of fractional 
anisotropy measures were evaluated. The measures were 
computed for the entire brain volume within the images. 
Specific regions both within relatively homogenous tissue 
areas (WM) and areas at tissue interfaces (e.g., GM/WM) 
were also investigated.  Regions of CSF were excluded from 
the analysis by using a trace threshold (trace > 0.006 mm2/s) 

Figure 2. The effects of filtering on FA in the whole brain 
region.  The plots show the effect of different filters on 
RMSE (Equation 8).

4. RESULTS 

4.1. Filtered Image Analysis 

The estimated RMSE values (Equation 8) for all filters are 
plotted in Figure 2 for FA over the whole brain. In all cases, 
the error increased after several iterations because of partial 
volume averaging. Isotropic Gaussian (IG) filtering 
dramatically increased the error after the first iteration, 
especially in white matter regions   with high anisotropy 
(FA > 0.4, data not shown), and performed very well in the 
gray matter tissue regions with relatively low anisotropy 
(FA < 0.15). Both anisotropic filters (AG and PM) 
demonstrated less error with large numbers of iterations. A 
combined PM and AG filter (PM+AG in Figure 2), which 

was designed to apply the PM and AG filter alternately at 
each iteration, was also evaluated. The combined filter 
demonstrated the overall minimum error and the resultant 
smoothed FA maps appear the sharpest [Figure 4].  

4.2. ROI-Specific Analyses 

The filter performance was also evaluated in specific brain 
regions to examine the filter behavior with the local tissue 
environment.  ROI 1 was placed in a boundary area of 
between GM and WM. ROI 2 was placed in a highly 
anisotropic region in the body of the corpus callosum, which 
was assumed to be relatively homogeneous and parallel. 
ROI 4 was placed in the globus pallidus, which is 
considered to be a region of relatively homogenous GM.   

ROI 1 – WM/GM Boundary.  At tissue interfaces, we expect 
filtering to be less effective and increase error. Isotropic 
Gaussian filter increased the error very rapidly, whereas the 
PM filter was more effective in minimizing partial voluming 
errors than the anisotropic Gaussian filter.  

ROI 2 – Corpus Callosum.  The anisotropic Gaussian filter 
introduced very little error into the FA estimates of 
homogenous WM [Figure 3].  

ROI 3 – Globus Pallidus Gray Matter.  In homogenous GM, 
the anisotropic and isotropic Gaussian filters were nearly 
equivalent in reducing the RMSE. The PM filter slowly 
reduced the RMSE since the t-value was small, 2.0=t .

Figure 3. The effects of filtering on FA in corpus callosum.   

4.3. Visualization of Maps from Filtered Data 

The effects of filtering on DTI maps after two iterations are 
displayed in Figure 4. The spatial texture of the FA maps is 
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clearly smoother for all filtering methods.  However, the 
features in the FA maps are sharper with anisotropic filters.  
The error in FA, particularly in WM regions such as the 
corpus callosum, is reduced. The minimum RMSE that was 
achieved by filtering and visual inspection suggest that the 
combination of the PM and the Anisotropic Gaussian filter 
was the most effective filtering method in our evaluation. 

         

Figure 4 (A) Gold standard, (B) unfiltered, (C) AG filtered, 
(D) IG filtered, (E) PM filtered, (F) PM+AG filtered FA 
maps at the 2nd iteration in Figure 2 

5. CONCLUSIONS 

In this study, anisotropic smoothing kernels based upon the 
diffusion tensor, an isotropic Gaussian distribution and the 
Perona Malik algorithm were investigated for reducing 
noise in diffusion tensor image data.  We had hypothesized 
that anisotropic kernels would effectively reduce noise in 
DTI data with less blurring of tissue types, particularly in 
white matter.  Our results indicated that this was indeed the 
case. More specifically, we noticed in regions of high 
anisotropy (WM) that anisotropic kernel (AG) smoothing 
reduced the partial volume averaging between tissue types. 
However, in low anisotropy region (GM) isotropic Gaussian 

filter performed best. Perona Malik algorithm was good at 
boundary regions. Overall, these results suggest that the 
optimum filter properties depend upon the type of tissue 
being investigated.   
As discussed in the Introduction, several anisotropic 
filtering algorithms have been developed to regularize and 
denoise DTI data.  These algorithms have focused on the 
preservation of discontinuities in the raw image data. In 
many of these previous filtering studies, the apparent 
objective has been to regularize the estimates of the white 
matter tract directions (e.g., Tschumperle et al. [7]; Coulon 
et al. [2]; Wang et al. [8]) in noisy tensor field data. This is 
important for white matter tractography, but less so for 
quantitative DTI studies.  In our study, the effects of spatial 
filtering methods on the quantification of important DTI 
measures were evaluated.  Future studies are necessary to 
evaluate and compare other anisotropic spatial filtering and 
regularization methods for DTI data.   
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