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ABSTRACT

The tensor-based morphometry (TBM) has been widely used in char-
acterizing tissue volume difference between populations at voxel
level. We present a novel computational framework for investigat-
ing the white matter connectivity using TBM. Unlike other diffu-
sion tensor imaging (DTI) based white matter connectivity studies,
we do not use DTI but only T1-weighted magnetic resonance imag-
ing (MRI). To construct brain network graphs, we have developed a
new data-driven approach called the ε-neighbor method that does not
need any predetermined parcellation. The proposed pipeline is ap-
plied in detecting the topological alteration of the white matter con-
nectivity in maltreated children who have been post-institutionalized
in orphanages in East Europe and China.

Index Terms— tensor-based morphometry, structural connec-
tivity, brain network, maltreatment, Jacobian determinant

1. INTRODUCTION

The human brain exhibits one of the most complex networks. This
anatomical substrate supports the emergence of the coherent physi-
ological activities in the distant brain regions that make up a func-
tional network [1]. Unlike extensively studied functional brain net-
works, structural connectivity is not often explored till the introduc-
tion of diffusion tensor imaging (DTI). Nowadays, DTI is often used
to investigate the structure of axonal fibers in human brains in vivo.

Recently, there has been an attempt of using cross-correlation of
cortical thickness as a way to investigate cortical connectivity [2, 3].
Besides the cortical thickness, it is possible to correlate other vowel-
wise morphometric measures in building whole brain connectivity
maps. For instance, we can correlate the Jacobian determinant ob-
tained from the tensor-based morphometry (TBM) framework. The
Jacobian determinant measures the change in the volume of a voxel
in deforming the template brain to match an individual brain [4].
By correlating the Jacobian determinant at different voxels, we can
quantify how the volume change in one voxel is correlated to the
volume changes in other voxels. In this sense, correlating Jacobian
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determinant can be directly used in constructing the whole brain map
of corresponding structural changes.

In this paper, we propose to construct a structural connectivity
map based on the cross-correlation of the Jacobian determinant for
the first time. The main advantage of the proposed technique is that
it does not require DTI but still able to construct the population spe-
cific connectivity maps only using T1-weighted MRI. Since MRI has
been extensively collected than DTI so far in clinical applications, it
would be highly beneficial if we can exploit the massive database of
MRI collected through the world in the last decade.

The second advantage of the proposed method is that it can build
connectivity maps over the whole brain. Cortical thickness based
connectivity maps are restricted to the gray matter only. However,
neural development such as myelination, axonal growth and glial
proliferation contributes the volume of the white matter so it is cru-
cial to look at connectivity maps over the white matter as well [5].
Our approach can build the connectivity maps of the whole brain
including the white matter enabling such an investigation.

The proposed framework is applied to the brain networks of the
children who have experienced deprivation or neglect in the early
stages of life and have been institutionalized in orphanages in East
Europe and China but are now living with adopted families in the
USA (Post-Institutionalized; PI). It is known that individuals who
experience such an early adversity are at heightened risk for a vari-
ous mental and physical problems. Hanson et al. found smaller local
volume in the orbitofrontal cortex, which is known as the central re-
gion to emotion and social regulation, in the PI than the age matching
normal controls (NC) [6]. Rodent models show that the cytoarchi-
tectural changes in the frontal cortex such as shortening of dendrite
length and the reduction of spine density occur by the chronic stress
[7]. Thus we expect decreased white matter connectivity in the PIs
in the regions including the frontal cortex.

2. METHODS

2.1. Subjects and MRI image

T1-weighted MRIs were collected using a 3T GE SIGNA scanner
for 32 PI and 33 NC subjects. Two groups are matched in terms
of age and gender but the mean whole brain volume is greater in
the PIs than in the NCs (1,808.2 ± 117.6 cm3 and 1,690.0 ± 156.4
cm3; T(63)= 3.44; p < 0.001). These variables are factored out as
nuisance covariates in computing partial correlation. Details on the
subjects and the image preprocessing pipelines are explained in [6].
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Fig. 1. Framework of the proposed analysis applied to post-
institutionalized (PI) children and normal control (NC). (a) Jacobian
determinant maps of individuals projected on the template. (b) par-
tial correlation maps seeded at the genu (marked with green squares)
(c) FDR-thresholding on partial correlation is used to establish edges
of the connectivity network. Only edges connecting near the genu
are visualized. The different pairings are marked with different col-
ors. (d) The proposed ε-neighbor graphs of connectivity. Only posi-
tive correlations are shown here. The gray shading of nodes indicates
the node degree. The size of nodes represents the number of nodes
that are merged in the ε-neighbor construction.

The running time for computing the whole correlation matrix
quadratically increases as the number of its nodes increases. Even
with about 300000 white matter voxels in the template, there are total
90000000000 cross-correlations to compute. The 1mm-resolution
Jacobian determinant maps are spatially smoothed out with a Gaus-
sian kernel with 3mm FWHM. This has the effect of representing the
Jacobian determinant as the weighted average of neighboring Jaco-
bian determinant. To reduce the computational burden, the Jacobian
determinant map are subsampled at every 5mm. Subsequently 2692
nodes are obtained over the white matter (reduction ratio= 0.80 %).
This is more than sufficient number of nodes for modeling white
matter connectivity and substantially larger than most of connectiv-
ity studies that use between 50-100 nodes.

2.2. Partial correlation maps

Fig.1 illustrates the proposed pipeline. Between 2692 nodes, we link
two nodes if the partial correlation of the Jacobian determinants is
statistically significant at a certain threshold. The Jacobian deter-
minant is defined as the determinant of the displacement gradient
matrix ∂U/∂x [4] as

J = det(I + ∂U/∂x) (1)

where U is the displacement matrix and x is the coordinate vector.
To remove the possible confounding effect of age, gender and

brain size, we used the partial correlation obtained from fitting gen-
eral linear models (GLM). Let z = (1, age, gender, volume) be the
nuisance covariate vector consisting of age, gender and volume of a
subject. Then we modeled the Jacobian determinant on the i-th node
as

Ji = zλi + εi (2)

where λi = (λi1, . . . , λi4)
′ is the unknown parameter vector and εi

is the correlated zero mean Gaussian noise. The residual of the fit is
given by ri = Ji−zλ̂i, where λ̂i are the least-squares estimation. It
can be shown that the partial correlation ρij between Ji and Jj while
factoring out the effect of the nuisance covariates z is simply given
by the Pearson correlation between the residuals ri and rj [8]. The
partial correlation ρij is then estimated using the sample correlation
as
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where n is the number of subjects in each group.

2.3. FDR thresholding of partial correlations

In order to obtain the deterministic network graph, we have thresh-
olded the correlated partial correlations using the false discovery rate
(FDR) thresholding. The distribution of correlations can be easily
approximated using the Fisher transform:

zij =
tanh−1(ρ̂ij)√

1/(n− 3)
∼ N(0, 1). (4)

The null hypothesis H0 is that there is no link between the nodes i
and j, i.e. ρij = 0.

The family-wise error rate (FWER) based thresholding would
highly inflated the statistical significance with 2692×2691/2 possi-
ble tests between all nodes. Thus we applied the FDR with q = 0.01



under a weak assumption of dependency. If the resulting FDR-
threshold is given by s, the adjacency matrix A = (aij) is given
by aij = 1 if zij ≥ s and aij = 0 otherwise, with the diagonal
terms aii = 0.

2.4. ε-neighbor graph simplicaton

Though the obtained adjacency matrices via the FDR thresholding
are sparse, almost ten thousands edges still encumber biological in-
terpretation. Furthermore, isolated single connections consisting of
two nodes are more likely false positives. Therefore, we need to
perform a network simplification without distorting underlying net-
work topology. For this purpose, we have adapted the ε-neighbor
scheme [9], which was originally applied in constructing network
graphs out of numerous white matter tracts obtained from DTI. The
algorithm condenses a given complex graph to a much simpler graph
iteratively.

From the FDR-thresholding, we obtain collection of significant
edges ei1ei2 linking two nodes ei1 and ei2. Suppose we have
constructed the graph Gk−1 using edges e11e12, · · · , ek−1,1ek−1,2

only. Then at the k-th iteration, we construct the graph Gk using
ek1ek2 somehow. In order to do this, we need to define the ε-
neighbor of a graph. Let us define the distance d(p,Gk) of a node p
to the graph Gk as

d(p,Gk) = min
q∈Vk

‖p− q‖. (5)

If d(p,Gk) ≤ ε for some radius ε, the node p is called the ε-neighbor
of Gk.

Initially the graph G1 = {V1, E1} starts with two nodes V1 =
{e11, e12} and a single edge E1 = {e11e12}. At the 2nd iteration,
we check if the new nodes e21 and e22 are the ε-neighbor of G1. We
will merge a new node to the existing node in V1 if the new node is
the ε neighbor of a node in V1. The idea is best illustrated with a toy
example given in Fig. 2.

Suppose e21 is the ε-neighbor of G1. We assume that e12 is the
closet node to e21. Then we merge e21 to e12 and update the ver-
tex and edge sets as V2 = {e11, e12, e22}, E2 = {e11e12, e12e22}.
Other possible scenarios are given in [9]. This merging and deletion
process is iteratively performed. However, the original ε-neighbor
construction method as presented in [9] does not produce a unique
graph and it depends on the initial choice of edge set E1. To guar-
antee the stability, we decided to update the coordinates of the pre-
existing node when a merging occurs. In the toy example, the coor-
dinates of e12 are updated to e12

′as

e12
′ ← e12n

1
12 + e21

n1
12 + 1

(6)

where nk
ij is the total number of nodes that are merged to the existing

node eij at the k-th iteration. If the merging happens, we have to
update nk

ij as well. So we have n2
12 = n1

12 +1. For this study, ε was
set to be 21 mm to investigate the connectivity at macro-scale level.

3. RESULTS

The FRD-thresholding produces the connectivity graph with 2692
nodes. The ε-neighbor method simplifies the graph with only 88
nodes and 241 edges for the PIs, and 86 nodes and 276 edges for
the NCs. In terms of the number of nodes, the ε-neighbor method
achieves the compression rate of 3.27 % while still preserving the
overall topological structures of graph with 2692 nodes.

e11 e22e11 e22∈e12

e21 e12′a b

Fig. 2. Schematic illustration of the ε-neighbor updating scheme.
(a) Initially the graph G1 consists of one edge e11e12 (black). At the
next stage, we determine how to connect the new edge e21e22 (red)
to the existing graph G1. The node e21 is within the ε radius (blue)
of the node e12. So e21 is the ε-neighbor of G1 and has to be merged
with e12. (b) The coordinates of the merged node e12 is updated to
e12
′ (green) and the new edge e12′e22 is included in G2.

We have used the degree of nodes as a discriminating feature be-
tween the two groups. The degree distributions of ε-neighbor graphs
are shown in Fig. 3. The counts in the high degrees are prone to
noise thus those exceeding degree 14 are summed into a single bin
[1]. Since the underlying distribution of degree differences is un-
known, the significance of the degree differences between groups
is tested using a permutation test. We randomly permuted the group
identifiers for 2,000 times and proceeded with the graph construction
procedures. Since we need to perform multiple tests for 15 degrees
simultaneously, the Bonferroni correction threshold for an individ-
ual test was set at 0.05/15 = 0.0033. There are significantly more
nodes with the low degrees (1, 3 and 4) in the PIs than the NCs. On
the other hand, there are more nodes with the high degrees (7 and 12)
in the NCs than the PIs. Since the numbers of nodes are expected to
be similar across groups, it suggests that the nodes with the high de-
grees are affected in the PIs resulting more low degree nodes. It also
implicates weakened connectivity in the PIs in accordance with the
previous literatures [7].

The anatomical patterns of the ε-neighbor graphs are shown in
Fig. 4. While the inter-hemispherical edges connecting homologous
sub-cortical regions are commonly found in the both groups, the dif-
ferences in the edge concentration are observed in the regions that in-
clude the cerebellar and the brainstem and also in the regions around
the anterior cingulate gyri. In addition to the edge concentration,
the extension of the edges that reach to the dorsal lateral prefrontal
regions and the medial temporal regions seems to be limited in the
PIs than in the NCs suggesting consistency with the reduced local
volume in those regions [6].

4. DISCUSSIONS

We have presented a novel structural connectivity mapping tech-
nique that uses only T1-weighted MRI. The constructed partial cor-
relation maps (Fig.1) look very similar to the probabilistic connec-
tivity maps obtained from DTI. Further research is need for validat-
ing the closeness of the partial correlation maps to the probabilistic
connectivity maps.

The network graphs showed significantly different degree dis-
tributions in PIs implying abnormal connectivity. The anatomical
pattern of the white matter connectivity seems to be locally different
across groups. However, it should be more thoroughly validated in a
further study.

In this paper, we have mainly focused on developing the connec-
tivity mapping technique via the TBM framework and the ε-neighbor
graph simplification.



Fig. 4. Local connectivity patterns of the ε-neighbor graphs. Only positive correlations are shown in a lateral view. Edges are color-coded
by the number of merged connections implying the strength of connections. The gray shading of nodes indicates the degree and the size of
nodes represents the number of nodes that are merged.

Fig. 3. Permutation tests on degree distributions. (a) Degree dis-
tributions. The significant differences between the PIs and the NCs
marked with green asterisks with p-values (Bonferroni corrected at
0.05). (b) The null distribution obtained by 2000 permutation tests.
X-axis is for the difference of degrees between the PIs and the NCs.
Y-axis is for the number of counts. Red vertical lines note the actual
differences.
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