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Voxel-based morphometry (VBM) has been used to analyze diffusion

tensor MRI (DT-MRI) data in a number of studies. In VBM, following

spatial normalization, data are smoothed to improve the validity of

statistical inferences and to reduce inter-individual variation. However,

the size of the smoothing filter used for VBM of DT-MRI data is highly

variable across studies. For example, a literature review revealed that

Gaussian smoothing kernels ranging in size (full width at half

maximum) from zero to 16 mm have been used in DT-MRI VBM type

studies. To investigate the effect of varying filter size in such analyses,

whole brain DT-MRI data from 14 schizophrenic patients were

compared with those of 14 matched control subjects using VBM, when

the filter size was varied from zero to 16 mm. Within this range of

smoothing, four different conclusions regarding apparent patient

control differences could be made: (i) no significant patient-control

differences; (ii) reduced FA in right superior temporal gyrus (STG) in

patients; (iii) reduced FA in both right STG and left cerebellum in

patients; and (iv) reduced FA only in left cerebellum in patients. These

findings stress the importance of recognizing the effect of the matched

filter theorem on VBM analyses of DT-MRI data. Finally, we

investigated whether one of the underlying assumptions of parametric

VBM, i.e., the normality of the residuals, is met. Our results suggest

that, even with moderate smoothing, a large number of voxels within

central white matter regions may have non-normally distributed

residuals thus making valid statistical inferences with a parametric

approach problematic in these areas.
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Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI)

(Basser et al., 1994) is unique in providing information about

organization and structural integrity of tissue in vivo. It has been

used increasingly to study a host of brain conditions including

white matter diseases, neuropsychiatric conditions, ischemic

syndromes, neurodevelopment, and aging (Horsfield and Jones,

2002; Lim and Helpern, 2002; Moseley, 2002; Neil et al., 2002;

Sotak, 2002). An unresolved question is how best to compare

DT-MRI data from two or more groups of subjects. One

approach involves making a priori hypotheses about the specific

anatomical location of patient-control differences and defining a

region of interest (ROI) within which to make measurements.

This approach is appropriate when the prior information is

sufficiently robust to allow prediction of the location and extent

of the expected differences. However, in many cases, and

particularly in psychiatric disorders, the spatial location and

extent of differences is not known a priori. Consequently, more

global search strategies, which here we refer to collectively as

whole brain voxel-based approaches, are often used. Typically,

image data sets are spatially normalized to a common template

under the assumption that a particular voxel address in each

image corresponds to the same anatomical structure across

subjects. Tests are performed on a voxel-by-voxel basis, so that

essentially every location within the brain is checked for patient-

control differences. This overcomes the issue of having to predict

the spatial location of putative differences since one can explore

the whole of the brain. There are, however, a few disadvantages

compared with the ROI approach. First and foremost, since one

is performing many more statistical comparisons by performing

statistical tests in every voxel, one increases the chance of Type I

error simply due to multiple comparisons and hence the statistical

power of the analysis is reduced. Bonferroni-type corrections

across all voxels analyzed would be far too conservative and so

other approaches are used. By far the most commonly used
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approach is based on the theory of Gaussian random fields

developed by Worsley et al. (1992) and implemented in SPM

(Ashburner and Friston, 2000; Friston et al., 1995). In this

approach, the image data are processed with a single low pass

filter (Gaussian kernel). This step confers a few important

benefits. First, and foremost, it improves the signal to noise ratio

(SNR) which will enhance detectability of genuine patient-

control differences. Second, it helps to ensure that the assump-

tions underlying the theory of Gaussian random fields (i.e.,

Gaussian distribution and homoscedasticity of residuals to the

linear model) are met so that the correction for multiple

comparisons can be correctly performed. Third, it dcushionsT
against imperfections in the spatial normalization of the

constituent images in the data set (see Ashburner and Friston,

2001; Bookstein, 2001).

While whole brain voxel-based approaches circumvent the

need to make a priori hypotheses concerning the location of

differences, they do not strictly overcome a need to make such

hypotheses about the spatial extent of any expected differences.

This is an important point since the matched filter theorem

(Rosenfeld and Kak, 1982) states that the width of the filter used

to process the data should be tailored to the size of the difference

one expects to see. Thus, when using a single low-pass filter to

pre-process DT-MRI data prior to performing a voxel-wise

comparison, one should specify a priori the spatial extent of the

effect one expects to see. However, diffusion tensor imaging is a

relatively new technique (Basser et al., 1994), and so experience

of expected effects is limited. Unfortunately, while substantial

research into the underlying physics of diffusion anisotropy has

been carried out (see Beaulieu, 2002), a thorough understanding of

the mechanism underlying diffusion anisotropy in human brain

parenchyma is incomplete. Furthermore, with one possible recent

exception (Kumari et al., 2004), no theories explaining the

observation of the uniformity of the trace of the diffusion tensor

across brain parenchyma (Pierpaoli et al., 1996) currently exist.

With this lack of understanding, it is clear that predicting a priori

how a particular disease state will affect mean diffusivity and

anisotropy is problematic.
Table 1

Examples of smoothing kernel sizes and voxel dimensions used in voxel-based a

Filter FWHM

(mm)

Voxel dimensions of

acquired data (mm)

Voxel dimensions of

analyzed data (mm)

None 1.72 � 1.72 � (5.00 + 1.00) 0.86 � 0.64 � (5.00 + 1.00)

None 1.88 � 1.88 � (5.00 + 0.00) 1.88 � 1.88 � (5.00 + 0.00)

3 � 3 � 3 1.29 � 1.72 � (4.00 + 1.00) 0.86 � 0.64 � (4.00 + 1.00)

4 � 4 � 4 1.88 � 1.88 � (5.00 + 1.50) 1.88 � 1.88 � (5.00 + 1.50)

4 � 4 � 4 1.88 � 1.88 � (5.00 + 1.00) 0.94 � 0.94 � (5.00 + 1.00)

5 � 5 � 5 1.88 � 1.88 � (2.80 + 0.00) 1.88 � 1.88 � (2.80 + 0.00)

6 � 6 � 6 3.00 � 3.00 � (3.00 + 0.00) 3.00 � 3.00 � (3.00 + 0.00)

6 � 6 � 6 3.00 � 3.00 � (5.00 + 0.00) 3.00 � 3.00 � (3.00 + 0.00)

8 � 8 � 8 2.50 � 2.50 � (5.00 + 0.00) 1.88 � 1.88 � (5.00 + 0.00)

9 � 9 � 9 1.29 � 1.72 � (4.00 + 1.00) 0.86 � 0.64 � (4.00 + 1.00)

10 � 10 � 10 2.50 � 2.50 � (5.00 + 0.00) 1.88 � 1.88 � (5.00 + 0.00)

12 � 12 � 12 1.88 � 1.88 � (5.00 + 0.00) 0.94 � 0.94 � (5.00 + 0.00)

16 � 16 � 16 2.50 � 2.50 � (5.00 + 0.00) 1.88 � 1.88 � (5.00 + 0.00)

Note that in acquisitions with non-zero slice gaps, we have taken the voxel dimens

column as (slice thickness + slice gap)—as this is the resolution of the data in the s

the filter to the dimension of the voxel along each of the three axes.

The disease/condition studied are indicated by the following superscripts: a = sch

amyotrophic lateral sclerosis; f = stuttering; g = epilepsy.
This may explain the range of choice of smoothing filter sizes

which have been used in the literature describing applications of

voxel-based approaches to analyze data from DT-MRI. Table 1

shows details of the filter sizes that have been used in voxel-based

analyses of DT-MRI data. If one assumes that the matched filter

theorem has been considered in designing the various studies, and

that the FWHM of the smoothing kernel has been chosen to match

the size of expected patient-control difference, then it is clear that

there is no common consensus on the size of patient control

differences one might expect to see, even within the same disease

state. An often quoted drule of thumbT governing the size of the

smoothing kernel is that a kernel of at least 2–3 times the voxel

dimension should be used for VBM. However, this rule of thumb

was empirically determined for fMRI and PET data to ensure that

the strict requirements of Gaussian random field theory (Worsley et

al., 1992), namely that the residuals to the general linear model

have a Gaussian distribution and have spatially invariant smooth-

ness, are met. Since there is no reason to expect that a rule

developed for fMRI and PET data should be universal, and in

particular should apply to DT-MRI data, we wished to investigate

the influence of varying the filter size on the outcome of a VBM-

type comparison of DT-MRI data and on the number of voxels with

non-normally distributed residuals from two groups of subjects. In

order to do this, we acquired DT-MRI data from 14 patients with

schizophrenia and 14 age-matched healthy controls and in our

analysis varied the size of the smoothing filter to cover the range

reported in the literature.
Methods

Subjects

Schizophrenia subjects

Fourteen right-handed males with DSM-IV criteria schizophre-

nia were recruited from wards and clinics at the South London and

Maudsley NHS Trust, London. Their median age was 34 years

(range 22–53 years) with median IQ 110 (range 98–124), measured
nalyses of DT-MRI data

FWHM/voxel

dimension of

acquired data (x y z)

FWHM/voxel

dimension of

analyzed data (x y z)

Reference

NA NA Hubl et al., 2004a

NA NA Ardekani et al., 2003a

(2.33 1.74 0.60) (4.66 3.48 0.60) Park et al., 2004a

(2.12 2.12 0.62) (2.12 2.12 0.62) Barnea-Goraly et al., 2004b

(2.12 2.12 0.67) (4.26 4.26 0.72) Barnea-Goraly et al., 2003c

(2.66 2.66 1.79) (2.66 2.66 1.79) Molko et al., 2004d

(2.00 2.00 2.00) (2.00 2.00 2.00) Sach et al., 2004e

(2.00 2.00 1.71) (2.00 2.00 2.00) Sommer et al., 2002f

(3.20 3.20 1.60) (4.27 4.27 1.60) Erikkson et al., 2001g

(6.98 5.23 1.80) (10.46 14.06 1.80) Park et al., 2004a

(4.00 4.00 2.00) (5.32 5.32 2.00) Erikkson et al., 2001f

(6.38 6.38 2.40) (12.8 12.8 2.40) Burns et al., 2003a

(6.40 6.40 3.20) (8.53 8.53 3.20) Foong et al., 2002a

ion to be equal to the slice thickness plus the slice gap (shown in the second

lice direction. The fourth and fifth columns show the ratio of the FWHM of

izophrenia; b = autism; c = fragile X syndrome; d = Turner syndrome; e =
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using the National Adult Reading Test. The median illness duration

was 8 years (range 1–25 years) and all were in remission and being

treated with antipsychotic medication. Exclusion criteria included

history of head injury, neurological symptoms, speech or hearing

difficulties, fulfillment of DSM-IV criteria for abuse of illicit drugs

or alcohol during their lifetime, and any contraindications to MRI

scanning, including metal implants and claustrophobia.

Comparison subjects

Comparison subjects were matched for gender, handedness, age

(median 34 years, range, 19–57 years), and IQ (median 109, range

99–123), had no medical/psychiatric disorders, no family history of

psychiatric disorder, and were not receiving medication. Subjects

from both groups gave written consent after the procedure had

been fully explained. The study was approved by the local

Research Ethics Committee.

Data acquisition

Data were acquired using a GE Signa 1.5 T LX MRI system

(General Electric, Milwaukee, WI), and an acquisition optimized

for diffusion tensor MRI of white matter, providing whole head

coverage with isotropic image resolution (2.5 mm � 2.5 mm �
2.5 mm). The acquisition was peripherally gated to the cardiac

cycle using a device placed on the subjects’ forefinger. Full details

are provided elsewhere (Jones et al., 2002a). Following correction

for image distortions introduced by the diffusion-weighting

gradients, the diffusion tensor was determined in each voxel

(Basser et al., 1994) and images of (a) T2-weighted intensity (i.e.,

the image intensity with no diffusion-gradients applied), (b) mean

diffusivity, and (c) fractional anisotropy (Basser and Pierpaoli,

1996) were computed for each subject.

Analysis

The DT-MRI acquisition and analysis allows images of the T2-

weighted intensity, mean diffusivity, and fractional anisotropy to

be created which are in perfect registration with each other.

Therefore, the T2-weighted image for each subject was used to co-

register the data sets to the T2-weighted EPI template that is

supplied as part of the SPM99 package (Wellcome Department of

Cognitive Neurology, Institute of Neurology, London, UK)

(Friston et al., 1995).

First, the data were masked using an automated masking

procedure based on a combination of the software package dBET-
Brain Extraction ToolT, part of the Functional Software Library

package (Oxford Centre for Functional Magnetic Resonance

Imaging of the Brain, Oxford University, Oxford, UK) and an

intensity thresholding procedure. Full details can be found in Jones

et al. (2002b).

Following masking, each subject’s T2-weighted image was

initially co-registered with the T2-weighted EPI template using an

affine transformation with 12 degrees of freedom. The 28 co-

registered T2-weighted images were then averaged and smoothed

with an 8-mm Gaussian kernel to create a dgroup templateT. The
purpose of generating a template from the data sets themselves was

to reduce any bias in template selection. Each individual subject’s

T2-weighted image was then co-registered to the group template

using an affine transformation with 12 degrees of freedom together

with a series of non-linear warps characterized by a set of 7 � 8 �
7 basis functions (in the x, y, and z directions). The transformations
required to do this were subsequently applied to the mean

diffusivity and fractional anisotropy images.

Two contrasts were used to detect whether each voxel had a

higher or lower mean diffusivity or fractional anisotropy in the

patient group compared with the group of control subjects. Increases

or decreases were deemed to be significant at the individual voxel

level when the P value assuming a Gaussian distribution of the data

was less than 0.05 after correcting for multiple comparisons.

Patient-control comparisons were performed after smoothing the

data with Gaussian kernels with FWHMs ranging from 3 mm to

16 mm in steps of 1 mm, as well as a comparison of the data

without any smoothing. Patient/control differences were consi-

dered significant only by voxel height (i.e., the P value in each

individual voxel, after multiple comparison correction), as

opposed to using cluster-level statistics.

To test for non-normality of the residuals at different levels of

smoothing, we utilized the dSPMdT toolbox developed by Luo and

Nichols (2003a,b) to compute the Shapiro–Wilk statistic (Shapiro

and Wilk, 1965) in each image voxel. With the Shapiro–Wilk (SW)

statistic, the null hypothesis is that the residuals follow a normal

distribution, i.e., for an alpha value of 0.05, if the P value is less

than 0.05, then the null hypothesis that the residuals have a

Gaussian distribution is rejected. Full details are provided in Luo

and Nichols (2003a). Two approaches were used to characterize the

non-Gaussian residual voxels. First, the number of voxels

throughout the entire brain volume (expressed as a proportion of

the total number of voxels within the brain) for which the P value

for the SW test was less than 0.05 was computed for a range of

smoothing kernels. Second, for the slices containing local maxima

in any significant patient-control differences, we identified which

particular voxels were deemed to have non-normally distributed

residuals and plotted their spatial distribution together with the

distribution of voxels with significant patient-control contrast.

Plotting the data in this way allowed us to see whether there was

any overlap in regions of significant patient-control differences and

regions in which residuals were deemed to be non-normally

distributed.
Results

Patient control differences

Mean diffusivity

No significant differences in mean diffusivity between the

control and patient groups were observed with any of the

smoothing filters used.

Fractional anisotropy

No significant differences in anisotropy with the danisotropy
elevated in patientsT contrast were revealed. However, with the

danisotropy reduced in patientsT contrast, the results were depend-

ent on variations in the width of the smoothing kernel used. With

no smoothing, and filter sizes of 3, 4, 5, and 6 mm, no significant

patient-control differences were observed. With smoothing kernels

having an FWHM of 7 and 8 mm, a single region centered at MNI

coordinate [54, �50, 22] (right superior temporal gyrus) was

present. The corrected P values for the most significant voxel were

P = 0.035 and P = 0.007 with the 7 and 8 mm filter sizes,

respectively. With a 9-mm kernel, a second focus appeared at

[�28, �44, �18] (left cerebellum). As the size of the smoothing
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kernel was increased further, this latter region increased in size,

while the former diminished in size to the point where, with a

Gaussian kernel of FWHM of 15 mm, it disappeared. This is

shown in Figs. 1 and 2. Note that the largest cluster extent at MNI

coordinate [54, �50, 22] occurred with a smoothing kernel of

around 11 mm.

Normality of residuals

Fig. 3 shows how the number of voxels with non-Gaussian

distributed residuals in the fractional anisotropy data (expressed as

a proportion of the total number of voxels analyzed) depends on

the kernel size for 4 mm through 16 mm. Unsurprisingly,

increasing the level of smoothing with a Gaussian kernel reduces

the proportion of voxels in the brain that the SW test deems to have

non-normally distributed residuals. Figs. 4 and 5 show the spatial

distribution of voxels with non-Gaussian residuals in the slices

containing the local maxima of patient-control differences in

superior temporal gyrus and cerebellar region, respectively, at the

different levels of smoothing.
Discussion

This study shows that, using a single low-pass filtering

approach (e.g., Barnea-Goraly et al., 2003; Burns et al., 2003;

Erikkson et al., 2001; Leung et al., 2004; Sommer et al., 2002), it
Fig. 1. Significant patient b control differences obtained with smoothing kernels w

level at P b 0.05 after correction for multiple comparisons.
would be possible to draw four different conclusions from the DT-

MRI data we collected from our patients and controls.

(i) With filter sizes less than or equal to 6 mm, we would

conclude that there were no patient-control differences in

FA.

(ii) With filter sizes having FWHM of 7 and 8 mm, we would

conclude that there is a single focus of reduced FA in

patients compared with controls in the vicinity of the right

superior temporal gyrus (STG) in patients.

(iii) With filter sizes of 9–14 mm, we would conclude that there

are two foci of reduced FA in patients compared with

controls, i.e., in the vicinity of the right STG and in the left

cerebellum.

(iv) With filter sizes greater than 14 mm, we would conclude

that patient control differences are confined to the left

cerebellum.

Interestingly, the first domain (filter sizes up to 6 mm in width)

encompasses the range in which the FWHM is set to dat least twice
the voxel dimensionT. As stated in the Introduction, there has long

been a rule of thumb in the SPM community that the FWHM

should be at least twice the voxel dimension in order to get

statistically robust results, although this result appears to be

empirical rather than theoretical (Ashburner, personal communi-

cation via SPM mailing list, 2004). If we stick with this rule of

thumb, however, we fail to see any patient control differences.
ith FWHM = 8, 10, 12 and 14 mm. Note the foci are significant at the voxe
l



Fig. 2. Plot of size of clusters at the locations shown in Fig. 1, as a function of size of the Gaussian smoothing kernel. Note the appearance and subsequent

disappearance of the significant reduction in FA centered at MNI coordinate [54, �50, 22].
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If we apply a rule that the FWHM should be 3 times the voxel

dimension (i.e., 7.5 mm), then we only observe the STG focus. It

appears then, that unless we have a particular hypothesis about the

spatial extent of a patient-control difference, a single low-pass

filtering approach where the width of the filter has been chosen

according to an dFWHM must be x times the voxel dimensionT-
type rule may be insufficient to identify patient control differences,

at least in our data set. Indeed Fig. 2 suggests that there are real

patient-control differences in FA, and that we are most ideally

sensitized to detect them when using a filter size of around 11 mm

(which is just over 4 times our voxel dimensions).

A review of Table 1 reveals that the rule of filter size being

at least twice the voxel dimension is followed in less than 50%

of the studies, if one considers all three dimensions. It is also

clear that there is no generally agreed standard concerning the

width of the Gaussian filter that one should use when analyzing

DT-MRI data using VBM. We note that in none of the cited
ig. 3. Plot of number of voxels with non-Gaussian residuals (expressed as proportion of number of voxels analyzed) for smoothing kernels in the range 4–16

m. Voxels were deemed to have non-Gaussian residuals if the P value from the Shapiro–Wilk test was less than 0.05.
F

m

studies was a clear hypothesis made about the expected extent of

any differences, nor a justification for the choice of smoothing

kernel used.

An interesting question is whether the effect of smoothing is

in the reduction of noise or in the enhancement of signal. We

believe that both mechanisms are at work here. There is no doubt

that increasing the size of the smoothing kernel will reduce the

noise level. However, if that were the sole mechanism at work,

then one would expect the size of the superior-temporal gyrus

patient-control difference to continually increase in size as the

kernel size increase. The dpeakingT of the cluster region, however,
at a smoothing of approximately 11 mm, and subsequent decline

of the volume with further smoothing, reinforces the notion that

the matched filter theorem is also a key factor in signal

detectability.

Again, we wish to re-iterate that the drule of thumbT relating
smoothing kernel sizes to voxel dimensions was originally



Fig. 4. Spatial distribution of voxels in which residuals are deemed to be non-normally distributed ( P = 0.05, Shapiro–Wilk) in the axial slice containing the

significant superior temporal gyrus patient-control difference in FA. Non-normal residual voxels are highlighted with a red dot. The green dots show voxels in

which FA was deemed to be significantly lower in patients compared with controls. The gray-scale image shows the mean of the FA images from the 14

controls obtained at the different levels of smoothing.
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established for fMRI and PET data to ensure that the statistical

requirements of Gaussian random field theory are met, including

the requirement for the residuals to the fitted model to be normally

distributed. Figs. 3–5 show just how well this assumption is met at
Fig. 5. Spatial distribution of voxels in which residuals are deemed to be non-norm

significant cerebellar patient-control difference in FA. Non-normal residual voxels

deemed to be significantly lower in patients compared with controls. The gray-sca

the different levels of smoothing.
different levels of smoothing. The Shapiro–Wilk (SW) test

performed on our data, with an alpha value of 0.05, suggests that

there are many voxels within central white matter structures in

which the residuals do not follow a Gaussian distribution. Most
ally distributed ( P = 0.05, Shapiro–Wilk) in the axial slice containing the

are highlighted with a red dot. The green dots show voxels in which FAwas

le image shows the mean of the FA images from the 14 controls obtained at
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worrisome is the large number of voxels in the corpus callosum in

Fig. 4, and in the cerebral peduncles in Fig. 5, that the SW test

deems to have non-Gaussian-distributed residuals, even for

moderate levels of smoothing (typical of that employed in the

literature). Similar patches of non-Gaussianity of residuals were

found in most of the major white matter tracts including the genu

and splenium of corpus callosum, cingulum, and internal and

external capsules (not shown). To the best of our knowledge, this is

the first time that the distribution of the residuals in VBM analyses

of FA data has been analyzed. Although these results are to be

regarded as preliminary given the relatively small sample size, they

do suggest that in future, VBM-type studies of this type, in which

significant findings are located, or a priori hypotheses predict

changes in, the corpus callosum and corticospinal tracts should

verify that one of the main assumptions underlying the approach

(i.e., the Gaussian distribution of the residuals) is met. Interest-

ingly, the two regions of significant patient/controls differences

found in the present study do not superimpose suggesting that, in

these areas at least, the assumption regarding Gaussianity of

residuals is valid.

Based on the findings of this study, there appear to be two

sensible approaches to analyzing data sets such as the one con-

sidered here. The first is to generate a well-formulated hypothesis

upfront about the spatial extent of any expected patient-control

differences with a clear explanation of the reasoning for such a

hypothesis. This should be accompanied, especially in light of a

negative finding, by a statement that the findings only pertain to the

length scale that was examined. However, this can prove extremely

difficult for certain disease states, such as schizophrenia, since very

little is known about the white matter abnormalities, despite several

DT-MRI studies published to date.

The second approach is to search the data with a number of

length scales for smoothing. In this work, we adopted something

of a dbrute forceT approach and compared results using the range

of filter sizes reported in the literature. One cannot simply do this

type of analysis, however, until the maximum sensitivity is found

and then report the P value obtained with this filter size. This is

because we have performed multiple comparisons of the data that

have not been corrected, thus the chance of Type I error

increases.

The concept of searching scale space in the context of voxel-

based analyses of image data, while not considered in DT-MRI to

date, has been around for over a decade. Poline and Mazoyer

(1994) described a 4D approach to searching PET data for

activations. This approach was later refined in order to obtain a

unified P value for the range of local foci identified by Worsley et

al. (1996). In this work, we have not implemented this latter

approach since our aim was simply to demonstrate that the matched

filter theorem is just as relevant to studies of DT-MRI data as it is to

PET and fMRI studies. We do note, however, that in our dbrute
forceT approach, we considered 12 different smoothing kernels in

the interval 4–16 mm. Siegmund and Worsley (1995) have shown

that the scale space is stationary in log space, hence a search of

scale space in the range used in this study does not need to be at

regular intervals, but as the sizes of the smoothing kernel increases,

the interval between samples of scale space can increase, without

loss of information. In other words, fewer samples of scale space

are needed to recover the same information obtained in this study.

Alternative multi-scale approaches to VBM analyses that have

not yet been applied to DT-MRI data include adaptive filtering

approaches (see, for example, Davatzikos et al., 2001) and
analyzing the data in wavelet space (e.g., Brammer, 1998;

Ruttimann et al., 1998). These are topics suitable for future

research. We also note that the voxel-based morphometry approach

is most often applied to data sets based on T1-weighted dstructuralT
scans, in which the image intensity is reasonably homogenous

within white matter. As discussed earlier, the image intensity in

mean diffusivity maps is fairly uniform within brain parenchyma.

In contrast, different architectural paradigms give rise to a wide

range of fractional anisotropy values (Pierpaoli et al., 1996) and so

fractional anisotropy is very heterogeneously distributed through-

out white matter. Thus, not only the effect of smoothing, but also

the effects of registration on the data sets must therefore be

considered when interpreting the results. Future investigations

should focus on the effects of the co-registration techniques

employed with such heterogeneous data to see how dependent the

results are on the method used.

An underlying assumption within SPM is that the data are

normally distributed. While this assumption may be valid for mean

diffusivity data (e.g., Pajevic and Basser, 2003), it cannot be

assumed to be correct for FA data. Indeed, our preliminary findings

indicate that there are many places where the residuals are not

normally distributed. The extent to which this affects the outcome

of analyses of anisotropy data based on the approach discussed

here, and hence the statistical validity of any inferences made, is

open to debate and future research. It is not our intention here to

comment on whether or how SPM should be used to compare data

sets from different groups. The interested reader is referred

elsewhere for such discussions Ashburner and Friston, 2001;

Bookstein, 2001; Crum et al., 2003; Davatzikos, 2004; Salmond

et al., 2002). Rather, it was our intention to survey the literature for

the range of smoothing sizes used, to discover the effect of utilizing

different filtering sizes, and to highlight the importance of

considering the scale of the examination. Certainly, we encourage

reporting whether or not smoothing was performed prior to analysis

and, if appropriate, the size of the smoothing kernel used, which

some groups have failed to do (e.g., Agartz et al., 2001; Buchsbaum

et al., 1998) so that the results may be compared with other studies

more meaningfully. We also encourage justification for the choice

of filter size, if a single smoothing kernel is used.

We wish to comment on the interpretation of an apparently

significant change in fractional anisotropy as obtained by the

method reported here. Regardless of whether the results obtained

here had revealed a significant difference in anisotropy between

patients and controls, there would be no evidence to suggest that the

dinformation pathwayT would be affected to any extent in the region
of reduced anisotropy. In other words, DT-MRI cannot provide any

information about functional connectivity. Furthermore, it is by no

means clear that a reduction in anisotropy would indicate that two

regions are more poorly structurally connected. For example, an

increase in the connectivity through a region may lead to more intra-

voxel averaging of fiber orientation in the voxel-averaged

estimation of anisotropy, thereby leading to a reduction in FA

(Pierpaoli et al., 1996). Indeed, to determine whether any finding

derived from DT-MRI is a correlate of increased or decreased

anatomical connectivity, a postmortem examination is needed.

Therefore, in interpreting the results of VBM analysis of DT-MRI

data we prefer to limit ourselves to saying that there is a significant

difference in fractional anisotropy as determined by VBM of DT-

MRI.

Finally, we note that alternative strategies to performing voxel-

based analyses of neuroimaging data based on randomization/
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permutation testing have been proposed (e.g., Bullmore et al.,

1999; Holmes et al., 1996; Nichols and Holmes, 2001). While

these approaches do not require smoothing to ensure that the data

fulfil the assumptions underpinning Gaussian random field theory,

the issue of optimally sensitizing the detection through the matched

filter theorem may be equally as applicable as it is to the parametric

methods and is worthy of further investigation.
Conclusion

Whole brain voxel-based approaches have been used in a

number of studies to compare DT-MRI data obtained from patients

with those obtained from controls. A wide range of smoothing

kernels has been used in these studies. We have demonstrated the

importance of considering, justifying, and reporting the length-scale

of the statistical testing that is being performed. These issues are not

new to neuroimaging but have yet to be considered and addressed

fully in the DT-MRI arena. The different results we obtained here

from the same data set suggest that three research groups analyzing

the same set of schizophrenic patients, each employing a reasonable

drule of thumbT for selecting the size of the smoothing kernel, would

draw different conclusions about the presence and location of the

white matter babnormalityQ seen in schizophrenia.

We have also shown that, with the current data set at least, even

with moderate levels of smoothing, many voxels within major

white matter fasciculi may have non-normally distributed resid-

uals—thereby breaking one of the central assumptions underlying

statistical parametric methods. This initial investigation into the

quantity and spatial distribution of voxels with non-normally

distributed residuals will hopefully prompt future investigators to

examine this issue in their own data and to select the level of

smoothing appropriately.
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