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Abstract. In this paper, we present a novel continuous mixture of diffusion ten-
sors model for the diffusion-weighted MR signal attenuation. The relationship
between the mixing distribution and the MR signal attenuation is shown to be
given by the Laplace transform defined on the space of positive definite diffusion
tensors. The mixing distribution when parameterized by a mixture of Wishart dis-
tributions (MOW) is shown to possess a closed form expression for its Laplace
transform, called the Rigaut-type function, which provides an alternative to the
Stejskal-Tanner model for the MR signal decay. Our model naturally leads to a
deconvolution formulation for multi-fiber reconstruction. This deconvolution for-
mulation requires the solution to an ill-conditioned linear system. We present sev-
eral deconvolution methods and show that the nonnegative least squares method
outperforms all others in achieving accurate and sparse solutions in the presence
of noise. The performance of our multi-fiber reconstruction method using the
MOW model is demonstrated on both synthetic and real data along with compar-
isons with state-of-the-art techniques.

1 Introduction

As the only noninvasive and in vivo imaging method available today which allows
neural tissue architecture to be probed at a microscopic scale, diffusion-weighted mag-
netic resonance imaging (DW-MRI) provides unique clues to the microstructure of tis-
sues and to changes associated with various physiological and pathological states. By
producing quantitative data of water molecule motion that naturally occurs in brain tis-
sues as part of the physical diffusion process, DW-MRI has also been used to map the
fiber orientation in the brain white matter tracks. This valuable information can be fur-
ther exploited for neuronal connectivity inference and brain developmental studies [1].

Assuming a displacement probability characterized by an oriented Gaussian prob-
ability distribution function, diffusion tensor MRI (DT-MRI) [2] provides a relatively
simple way of quantifying diffusional anisotropy as well as predicting the local fiber
direction within the tissue from multidirectional DW-MRI data. However, the major
drawback of diffusion tensor MRI is that it can only reveal a single fiber orientation in
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each voxel and fails in voxels with orientational heterogeneity [3], which makes DT-
MRI an inappropriate model for use in the presence of multiple fibers within a voxel.

This limitation of diffusion tensor model has prompted interest in the development
of both improved image acquisition strategies and more sophisticated reconstruction
methods. Both spherical harmonic expansion [4] and the equivalent higher order tensor
model [5] have been used to represent the diffusivity profile based on the Stejskal-
Tanner mono-exponential attenuation model. Knowing that the peaks of the diffusivity
profile do not necessarily yield the orientations of the distinct fiber populations, a num-
ber of model-independent approaches attempt to transform the multi-directional signals
into a probability function describing the probability of water molecular displacement.
The q-ball imaging (QBI) method approximates the radial integral of the displacement
probability distribution function (PDF) by the spherical Funk-Radon transform [6].
More recent studies have expressed QBI’s Funk-Radon transform in a spherical har-
monic basis [7, 8, 9]. Diffusion spectrum imaging (DSI) can measure the microscopic
diffusion function directly based on the Fourier relation between the diffusion signal
and the diffusion function, but is limited by the time-intensive q-space sampling bur-
den [10]. The diffusion orientation transform (DOT) transforms the diffusivity profiles
into probability profiles by explicitly expressing the Fourier relation in spherical coor-
dinates and evaluating the radial part of the integral analytically [11].

Some multi-compartmental models have also been used to model the diffusion-
attenuated MR signal using a finite mixture of Gaussians [3, 12, 13]. A continuous ex-
tension of the finite discrete mixture model is the spherical deconvolution method [14].
Compared to the multi-compartment models, the spherical deconvolution framework
has two significant advantages. First, it is not required to specify the number of under-
lying fiber populations before deconvolution while this number has to be known in order
to build the multi-compartment models. Second, the spherical deconvolution methods
often yield a linear system which can be solved efficiently while the multi-compartment
models usually involve the expensive nonlinear fitting. Recognizing these merits of the
spherical deconvolution framework, recently many researchers have proposed a number
of variants of spherical deconvolution approaches [7, 15, 16] with different choices of
basis functions, deconvolution kernels and regularization schemes.

In this paper, we present a novel probabilistic model that significantly generalizes
the traditional diffusion tensor model [2]. First, we assume that each voxel is associated
with an underlying probability distribution defined on the space of diffusion tensors (the
manifold of 3×3 positive-definite matrices). Conceptually, our model can be viewed as
a natural extension of the multiple-compartment models [3, 13]. Moreover, this exten-
sion relates the continuous mixture model to MR signal attenuation through a Laplace
transform defined for matrix-variate functions. It is worth noting that the Laplace trans-
form can be evaluated in closed form for Wishart distributions and the resulting closed
form leads to a Rigaut-type function which has been used in the past to explain the
MR signal decay [17]. Our model naturally leads to a deconvolution formulation of
the multi-fiber reconstruction problem, where the deconvolution kernel is the Laplace
transform kernel and the basis functions are Wishart distributions. We develop an effi-
cient and robust scheme for reconstructing the multiple fiber bundles using the proposed
model and show several comparisons with other state-of-the-art methods.



386 B. Jian and B.C. Vemuri

2 Theory

By generalizing the discrete Gaussian mixture model to the continuous case, we pos-
tulate that at each voxel there is an underlying probability measure associated with the
manifold of n×n symmetric positive-definite matrices, Pn (by default P3). Let f(D) be
its density function with respect to some carrier measure dD on Pn. Then the diffusion
weighted MR signal S(q) can be modeled as:

S(q)/S0 =
∫
Pn

f(D) exp[−bgT Dg] dD , (1)

where S0 is the signal in the absence of diffusion weighting gradient, q encodes the
magnitude (G) and direction (g) of the diffusion sensitizing gradients, and b is the dif-
fusion weighting factor depending on the strength as well as the effective time of diffu-
sion. Note that Eq. (1) implies a continuous form of mixture model with f(D) being a
mixing density over the components in the mixture. Clearly, our model simplifies to the
diffusion tensor model when the underlying probability measure is the Dirac measure.

Since b gT Dg in Eq.(1) can be replaced by trace(BD) where B = b ggT , the equa-
tion (1) can be expressed as the Laplace transform (matrix variable case) [18]:

S(q)/S0 =
∫
Pn

exp(−trace(BD)) f(D)dD = (Lf )(B) , (2)

where Lf denotes the Laplace transform of a function f which takes its argument as
symmetric positive definite matrices from Pn.

This expression naturally leads to an inverse problem: recovering of a distribution
defined on Pn that best explains the observed diffusion signal S(q). This is an ill-posed
problem and in general is intractable without prior knowledge of the probabilistic struc-
ture. In conventional DT-MRI, the diffusion tensor is usually estimated by solving a
linear or nonlinear least squares problem, which amounts to applying the maximum
likelihood estimator. Instead our approach views the diffusion tensor as random vari-
able (matrix) belonging to some known distribution family, which allows us to model
the uncertainty in the diffusion tensor estimation. Note that in DT-MRI, the diffusion
tensor can be interpreted as the concentration matrix (inverse of the covariance matrix)
of the Gaussian distribution in the q-space. It is a common practice to put a Wishart
distribution (see definition below) prior, on the concentration matrix in multivariate
analysis. Moreover, in the case of a Wishart distribution, a closed form expression for
the Laplace transform exists and leads to a Rigaut-type asymptotic fractal law for the
MR signal decay behavior which has been observed in the past (see explanation below).

Definition 1. [18] For Σ ∈ Pn and for p in
(

n−1
2 , ∞

)
, the Wishart distribution γp,Σ

with scale parameter Σ and shape parameter p is defined as 1

dγp,Σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |Σ|−p e−trace(Σ−1Y) dY, (3)

where Γn is the multivariate gamma function and | · | is the matrix determinant.

1 Note that the correspondence between this definition and the conventional Wishart distribution
Wn(p,Σ) is given simply by γp/2,2Σ = Wn(p,Σ).
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The Wishart distribution γp,Σ is known to have the closed-form Laplace transform:
∫

e−trace(ΘY) dγp,Σ(Y) = (1 + trace(ΘΣ))−p where (Θ + Σ−1) ∈ Pn. (4)

Let f in (2) be the density function of γp,Σ with the expected value D̂ = pΣ. We have

S(q) = S0 (1 + (b gT D̂g)/p)−p . (5)

This is a familiar Rigaut-type asymptotic fractal expression [19] implying a signal decay
characterized by a power-law which is the expected asymptotic behavior for the MR
signal attenuation in porous media. Note that although this form of a signal attenuation
curve had been phenomenologically fitted to the diffusion-weighted MR data before
[17], until now, there was no rigorous derivation of the Rigaut-type expression used
to explain the MR signal behavior as a function of b-value. Therefore, this derivation
may be useful in understanding the apparent fractal-like behavior of the neural tissue
in diffusion-weighted MR experiments. Also note when p tends to infinity, we have
S(q) → S0 exp(−bgT D̂g) , which implies that the mono-exponential model can be
viewed as a limiting case (p → ∞) of our model.

The single Wishart distribution model has a drawback in that it can not resolve the
intra-voxel orientational heterogeneity due to the single mode of the Wishart distribu-
tion. Hence it is natural to use a discrete mixture of Wishart distribution model where
the mixing distribution in Eq.(2) is expressed as dF =

∑N
i=1 widγpi,Σi . In order to

make the problem tractable, several simplifying assumptions are made as follows. First,
in this model (pi, Σi) are treated as the basis and will be fixed as described below. This
leaves us with the weights, w = (wi), as the unknowns to be estimated. Note that the
number of components in mixture, N , only reflects the resolution of the discretization
and should not be interpreted as the expected number of fiber bundles. We assume that
all the pi take the same value, pi = p = 2, based on the analogy between the Eq.(5)
and Debye-Porod law of diffraction [20] in 3D space. Since the fibers have an approxi-
mately cylindrical geometry, it is reasonable to assume that the two smaller eigenvalues
of diffusion tensors are equal. In practice, we fix the eigenvalues of Di = pΣi to spec-
ified values (λ1, λ2, λ3) = (1.5, 0.4, 0.4)μ2/ms consistent with the values commonly
observed in the white-matter tracts [3]. This rotational symmetry leads to a tessellation
where N unit vectors evenly distributed on the unit sphere are chosen as the principal
directions of Σi. For K measurements with qj , the signal model equation:

S(q) = S0

N∑
i=1

wi(1 + trace(BΣi))−p (6)

leads to a linear system Aw = s, where s = (S(q)/S0) contains the normalized
measurements, A is the matrix with Aji = (1 + trace(BjΣi))−p, and w = (wi) is the
weight vector to be estimated.

Like many existing reconstruction methods, our method can be cast into a unified
convolution framework as follows:

S(q)/S0 =
∫
M

R(q, x)f(x)dx (7)
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In Eq. (7), the signal is expressed as the convolution of a probability density func-
tion and a kernel function. The integration is over a manifold M whose elements x
contain the useful information like orientation and anisotropy. The convolution kernel,
R(q, x) : R

3 × M �→ R represents the response derived from a single fiber. In order to
handle the intra-voxel orientational heterogeneity, the volume fractions are represented
by a continuous function f(x) : M �→ R. The deconvolution problem is to estimate
the f(x) given the specified R(q, x) and measurements S(q)/S0. In literature, f(x) is
usually expressed as a linear combination of N basis functions: f(x) =

∑
wjfj(x).

The choices of convolution kernels and basis functions are related to the underlying
manifold M. A simple example is to set M to the unit sphere, which leads to the
spherical deconvolution problem [15]. Though involving the manifold of diffusion ten-
sors, several other approaches still reduce to the sphere deconvolution problem since
only rotationally symmetric tensors are considered. [14, 13, 7].

The types of basis functions include radial basis functions [15], spherical harmon-
ics [14, 7]. Like in [14, 13, 7], our method uses the standard diffusion tensor kernel.
However, it is the Wishart basis function that distinguishes our method from these re-
lated methods. It is worth noting that the Wishart basis reduces to the Dirac function
on Pn when p = ∞ and thus leading to the tensor basis function method introduced
in [13]. The fiber orientation estimated using the continuous axially symmetric tensors
(FORECAST) method proposed in [7] also resembles (very closely) our method with
the basis function being chosen as the spherical harmonics.

3 Stable, Sparse and Positive Deconvolution

The deconvolution problem can be formulated in a general form of as,

Aw = s + η, (8)

where s contains K measurements S(q)/S0, the K × N matrix A = {Aij} is given by
Aij =

∫
M

R(qi, x)fj(x)dx and η represents certain noise model. Note that the integral
to compute the entries of A may have an analytical solution as in our model and others
that use the tensor kernel [14,13,7], or needs to be numerically approximated as in [15].
But, once the response kernel R(q, x) and the basis function are specified, the matrix
A can be fully computed (or approximated) and only w, a column vector containing K
unknown coefficients, remains to be estimated.

Under the assumption that the measurement errors η are i.i.d. and normally distrib-
uted, the maximum likelihood estimate of w naturally leads to the L2 norm as a mea-
sure of goodness of the fit. Without inequality constraints, the corresponding quadratic
programming (QP) problem minimizing the residual sum of squares

(P1) min ‖Aw − s‖2 (9)

can be efficiently solved by solving a linear system using for instance, direct methods
when the size of the linear system in Eq. (9) is not large as in our application. The so-
lution in the least squares sense is given by w = A+s where A+ = (AT A)−1AT is the
pseudoinverse of the A. The advantage of applying the pseudoinverse is in its light com-
putational burden since the matrix A is identical in each voxel and its pseudoinverse only
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Fig. 1. Left plot shows the case where the A matrices are constructed from the radial basis function
and the tensor kernel model as in [15]. Right plot shows the case with a standard diffusion tensor
kernel weighted by a mixture of Wisharts. Both assume 81 diffusion gradient directions and two
tessellation schemes (81 and 321 directions) are considered for each model.

needs to be computed once. However, this simplicity and efficiency comes at the cost of
higher susceptibility to noise, due to the fact that the matrix A is usually ill-conditioned
in our application as illustrated in Fig. 1. Efforts at reliable multi-fiber reconstruction in
the presence of noise have included low-pass filtering [14], the maximum entropy prin-
ciple [15] and Tikhonov regularization [16]. In the Tikhonov regularization framework,
the problem in Eq. (8) can be formulated as:

(P2) min ‖Aw − s‖2 + α‖Tw‖2 (10)

where α is a regularization parameter and T is a regularization operator. In order to
penalize the magnitude of the estimates, (P2) in (10) with T being the identity operator
I is often used and yields the relation: w = (AT A + αI)−1AT s. Recently, a Damped
Singular Value Decomposition was used to regularize the fiber orientation distribution
[21] where the damping factor α is determined by minimizing the Generalized Cross
Validation (GCV) criterion, which provides a simple and objective method, though not
really optimal, for choosing the regularization parameter.

In practice, the number of diffusion MR image acquisition sequence, K , is rarely
greater than 100. On the other hand, a high resolution tessellation with N > 100 is
usually taken to obtain an accurate reconstruction. This under-determined linear system
has infinite solutions in the least squares sense and usually produces the w with many
negative-valued components which are not physically meaningful. Another issue related
to this configuration is the sparsity constraint. Since the number of significant spikes in
w is indicative of the number of maxima in the displacement probability surfaces, w
is expected to have a sparse support. Recently a series of significant research articles
have been published by Candés and collaborators (see [22] and references therein) on
a theory of signal recovery from highly incomplete information. The central result rel-
evant to us here, states that a sparse vector w ∈ R

N can be recovered from a small
number of linear measurements s = Aw ∈ R

K , K � N (or s = Aw + η when
there is measurement noise) by solving a convex program. Among the several problems
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they have discussed, we are particularly interested in the following two problems: (1)
Min-L1 with equality constraints:

(P3) min ‖w‖1 subject to Aw = s (11)

and (2) Min-L1 with quadratic constraints:

(P4) min ‖w‖1 subject to ‖Aw − s‖2 ≤ ε (12)

where ε is a user specified parameter. Both problems (P3) and (P4) find the vector
with smallest L1 norm (‖w‖1 =

∑
i |wi|) that best explains the observation s. (P3)

can be recast as an linear-programming (LP) problem while (P4) can be recast as a
second order cone programming (SOCP) problem (see [22, 23] and references therein
for details). We will report the results of implementation of these methods for the sake
of comparisons in the next section.

However, (P3) and (P4) do not explicitly enforce the nonnegative constraints. The
straight forward solution is to incorporate a nonnegative constraint while minimizing
the least-squares criterion:

(P5) min ‖Aw − s‖2 subject to w ≥ 0. (13)

This non-negative least squares (NNLS) minimization is precisely a quadratic program-
ming problem: Find the minimum point of a concave quadratic function in a linearly
bounded convex feasible hyperspace. The most used algorithm for NNLS was devel-
oped in [24, Ch. 23], which treats the linear inequality constraints using an active set
strategy. Though the sparsity constraint is not explicitly imposed, the active set strategy
tends to find the sparse solution quickly if there exists such one. Additionally, unlike
other iterative methods mentioned above, this algorithm requires no arbitrary cutoff pa-
rameter and hence the output is not susceptible to mis-tuning of the input parameters.
More comparisons of these methods on simulation data are shown in Section 4.

After w is estimated, the displacement probabilities can be approximated by the
Fourier transform P (r) =

∫
(S(q)/S0) exp(−iq · r) dq where r is the displacement

vector. Assuming a continuous diffusion tensor model (1) with mixing distribution
F (D) =

∑N
i=1 widγpi,Σi , we have

P (r) =
∫

R3

∫
Pn

e−qT DqtdF (D)e−iq·rdq ≈
N∑

i=1

wi√
(4πt)3|D̂i|

exp(
−rT D̂i

−1
r

4t
)

(14)

where D̂i = pΣi are the expected values of γp,Σi . Note that the end result is expressed
as a mixture of oriented Gaussians. Due to its good analytic properties, many of the
quantities produced by other methods including the radial integral of P (r) in QBI [6]
and the integral of P (r)r2 in DSI [10] are analytically computable using our technique.
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4 Experimental Results

4.1 Numerical Simulations

Prior to performing the experiments on real diffusion MRI data, we first test the perfor-
mance of the methods described in the previous section on the HARDI simulations of
1-,2- and 3-fiber geometries with known fiber orientations as shown in Fig. 2. The diffu-
sion MR signals were realistically simulated by using the formulas from the cylindrical
boundary restricted diffusion model in [25] with the same parameter settings as in [11].

Fig. 2. HARDI simulations of 1-, 2- and 3-fibers
(b = 1500s/mm2) visualized in QBI ODF surfaces
using [7, Eq.(21)]. Orientation configurations: az-
imuthal angles: φ1 = 30◦, φ2 = {20◦, 100◦}, φ3 =
{20◦, 75◦, 135◦}; polar angles are all 90◦.

In order to compare the performance
of the five deconvolution methods de-
scribed in Section 3, we first apply
all of them on the noiseless 1-fiber
HARDI simulation data and the re-
sults of w obtained from these meth-
ods are plotted in Fig. 3. We observe
that the least squares solution to (P1)
contains a large portion of negative
weights and has relatively large mag-
nitude. A zeroth-order Tikhonov reg-
ularization (P2) is able to reduce the
magnitude significantly but does not
help achieve the sparsity and non-
negativity. By minimizing the L1 norm with equality constraints, (P3) yields relative
sparse solution but the magnitude and the negative values are not controlled. The re-
sult produced by (P4) has better sparsity and non-negativity. Evidently, the best result
is obtained by solving (P5) using NNLS. Among the 321 components, there are only
two nonzero and significant spikes which both lie in the neighborhood of true fiber
orientation (30◦, 90◦). It is important to note that (1) the true fiber orientations do not
necessarily occur at the maximum of the discrete w vector; and (2) although all of these
different results for w actually lead to a very good approximation of the true displace-
ment probability function P (r) after taking the Fourier transforms, a sparse positive
representation of w obviously offers a great advantage in setting the initial guess in the
optimization procedure used to find the fiber orientations by estimating the extrema of
P (r). Considering the additional computational overhead for solving (P3), (P4) and
(P5) due to the iterative optimization, (P5) is slightly slower than (P3) (LP) but sig-
nificantly faster than (P4) (SOCP). It only takes MATLAB’s built-in lsqnonneg around
20-200ms to solve a problem of size 81 × 321. Fig. 4 further shows the results of using
NNLS on the noisy simulated data. Clearly, NNLS is still able to produce quite accurate
solutions which also are sparse representations.

Finally, as a conclusion to our experiments on the simulated data, we compare the
proposed method mixture of Wisharts (MOW) model with two model-free methods,
namely, the Q-ball ODF [6] and the DOT [11]. In order to provide a quantitative com-
parison, all the resulting P (r) surfaces were represented by spherical harmonics coef-
ficients up to order l = 6. As before, the Q-ball ODF is computed using the formula
in [7, Eq.(21)]. First, to gain a global assessment of these methods in terms of stability,
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Fig. 3. Deconvolution-based computation of w in the 1-fiber HARDI simulation. The matrix A is
of size 81×321 and is built from the Wishart model but with p = ∞. The Min-L1 algorithms are
solved using the package developed in [23]. The NNLS solver is the MATLAB built-in lsqnonneg
function based on Lawson and Hanson’s algorithm [24].

we calculated the similarity between each noisy P (r) and the corresponding noiseless
P (r) using the angular correlation coefficient formula given in [7, Eq.(71)]. The angu-
lar correlation ranges from 0 to 1 where 1 implies identical probability profiles. Then,
we estimated the fiber orientations of each system by numerically finding the maxima of
the probability surfaces with a Quasi-Newton algorithm and computed the deviation an-
gles between the estimated and the true fiber orientations. Figure 5 shows the mean and
standard deviation of the angular correlation coefficients, and error angles, respectively,
for the two-fiber simulation. Note that among the three methods examined, only MOW
results in small error angles and high correlation coefficients in presence of relatively
large noise. This trend also holds for the 1-fiber and the 3-fiber simulations. This can be
explained by noting that NNLS is able to locate the sparse spikes quite accurately even
in the presence of large noise.

4.2 Real Data Experiments

The rat optic chiasm provides an excellent “platform” to experimentally validate our
approach due to its distinct myelinated structure with both parallel and descussating
(crossing) optic nerve fibers. Decussating fibers carry information from the temporal
visual fields to the geniculate body. A HARDI data set was acquired from a perfusion-
fixed excised rat optic chiasm at 14.1T using a Bruker Avance imaging system with a
diffusion-weighted spin echo pulse sequence. DW-MRI data were collected using 46
directions with a b-value of 1250s/mm2 and a single image with b ≈ 0s/mm2. Echo
time and repetition time were 23ms and 0.5s respectively; Δ and δ values were set to
12.4ms and 1.2ms respectively; bandwidth was set to 35kHz; signal average was 10;
a matrix size of 128×128×5 and a resolution of 33.6×33.6×200μm3 was used. The
optic chiasm images were signal averaged to 67.2× 67.2× 200μm3 resolution prior to
computation of the water molecule displacement probability field.
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Fig. 4. Deconvolution-based computation of w using NNLS on simulated data in presence of
Riccian noise with σ = .06. The matrix A is constructed by using the Wishart model with
p = 2 and the tessellation of size N = 321. From left to right are the 1-fiber, 2-fiber and 3-
fiber simulations, respectively. The spikes in each resulting w are marked with the corresponding
azimuthal and polar angles in degrees. Note all the spikes detected are close to the ground truth
orientations specified in Figure 2.

Three methods are used to generate the displacement probability functions for the
optic chiasm image. The results on a region of interest are shown in Figure 6. The cor-
responding S0 image is also shown in the upper left corner as a reference. As seen from
the figure, the fiber-crossings in the optic chiasm region is not identifiable in Figure
6 (c). Note that both the DOT method and the MOW method are able to demonstrate
the distinct fiber orientations in the central region of the optic chiasm where ipsilateral
myelinated axons from the two optic nerves cross and form the contralateral optic tracts.
However, it is evident from the figure that compared to all other solutions, the MOW
scheme yields significantly sharper displacement probability surfaces. This is particu-
larly borne out in the central location of the figure labeled, the optic chiasm. One of the
reasons for the blurred appearance of these probability surfaces in the QBI and DOT
models is due to the fact that neither of them yield the actual displacement probability
surfaces but a corrupted P (r) where the corrupting factor is a a zeroth order Bessel
function in the QBI method and a function that does not have an analytic form in the
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Fig. 5. Mean and standard deviation of (a) angular correlation coefficient and (b) error angles for
the two-fiber simulation. The displayed values for error angles are averaged over the two fibers.
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Fig. 6. Probability surfaces computed from a rat optic chiasm image using three methods. Note
the decussation of myelinated axons from the two optic nerves at the center of the optic chiasm.

case of DOT. This corruption effects the accuracy of the reconstructed fiber orientations
as evidenced in the simulated data case where ground truth was known.

5 Conclusions

In this paper, we present a novel mathematical model which relates the diffusion MR
signals and probability distributions for positive definite matrix-valued random vari-
ables through Laplace transforms. We further show that the closed form expression for
the Laplace transform of Wishart distributions leads to Rigaut-type asymptotic fractal
law for the MR signal decay behavior which has been observed experimentally in the
past [17]. Moreover in this case, the traditional diffusion tensor model is the limiting
case of the expected signal attenuation. We further develop a spherical deconvolution
method for resolving multiple fiber orientations using the mixture of Wisharts (MOW)
model. To address the numerical issues and sparsity constraints raised in solving this de-
convolution problem, we investigate a number of deconvolution techniques and demon-
strate that the classic non-negative least squares (NNLS) algorithm developed in [24]
is most suitable for our deconvolution problem in achieving sparseness and robust-
ness. Experimental results on both synthetic and real data sets have also shown that
the proposed MOW model combined with NNLS deconvolution provides better overall
performance than other state-of-the-art techniques for multi-fiber reconstruction.
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