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ABSTRACT

For functional measurements, the test statistic of the measurements
is usually constructed at every points in space and thresholded to
determine the regions of significant signals. This thresholding pro-
duces a small patch of regions around the critical values of the test
statistic. It is known that the probability of the critical values big-
ger than a specific threshold can be computed as the expectation of
the Euler characteristic of the patch. Motivated by this topological
connection, we present a new computational framework of modeling
various functional measurements as topological objects.

The level set associated with functional measurements can be
approximated using a simplicial complex consisting of nodes and
links. The existence of links basically determine the underlying
topological structure of the signal. The strength of links can be mod-
eled using an underdetermined linear model. By incorporating spar-
sity into the model, the links can be sparsely obtained making in-
terpretation and visualization of the simplicial complex easier. The
main contribution of this paper is showing the relationship between
sparse topological structures to the sparse regression framework. We
apply this novel framework in constructing a structural brain network
model.

Index Terms— compressed sensing, LASSO, persistent homol-
ogy, partial correlation, network

1. INTRODUCTION

In science and in particular medical imaging, it is usually assumed
that the i-th functional measurement fi(x) at position x ∈M ⊂ Rd
follows

fi(x) = µ(x) + εi(x), (1)

where µ is the unknown mean signal to be estimated, εi is noise and
M is the underlying manifold where the data is observed [1, 2, 3,
4, 5, 6]. The unknown signal is usually estimated by various spatial
smoothing techniques over the manifoldM.M can be the 2D brain
cortical surface (Figure 1) or 3D brain network graphs (Figure 4).

In a traditional statistical framework, inference on the model (1)
proceeds as follows. At each fixed point x, consider the hypotheses
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of the form

H0(x) : µ(x) = 0 vs. H1(x) : µ(x) > 0. (2)

We construct a test statistic T (x) as a function of measurements fi at
each fixed x. We still rejectH0(x) if T is larger than some threshold
h. Extending the inference framework (2) to all points in M, we
have

H0 =
\
x∈M

H0(x) vs. H1 =
[
x∈M

H1(x).

H0 is the intersection of every possible null hypotheses H0(x) over
M. Then we rejectH0 if T (x) is larger than some threshold h. Note
that H0 is equivalent to the condition that supx∈M T (x) > h.

In order to compute the type-I error associated withH0, we need
to know the distribution of the supremum of the field T (x), which
is not straightforward. Hence a great deal of the imaging and statis-
tical literature have been devoted to determining the distribution of
supx∈M T (x) [7, 8, 9, 6, 10]. Define the excursion set as

Ah = {x ∈M : T (x) > h}.

It is known that

P
“

sup
x∈M

T (x) > h
”
≈ Eχ(Ah), (3)

the expectation of the the Euler characteristic of the excursion set
Ah [11, 12, 13]. The relationship (3) reformulates the usual statis-
tical inference as a topological problem. Figure 2 shows how the
excursion set changes over increasing threshold levels h.

The above framework is one way of detecting a signal, however
it is not necessarily the best way to characterize complex multivari-
ate functional data such as brain MRI. Instead of looking at the topo-
logical change of the excursion set of the statistic T over increasing
threshold levels h, we look at the topological change of measure-
ments fi first. Let

Bi,h = {x ∈M : fi(x) > h}

be the excursion set associated with the i-th measurement. We can
then determine the topological structure of Bi,h first, and perform
statistical inference later (Figure 2). The main tool for investigating
the topological change of the excursion set is persistent homology
[14, 15, 16]. Using Morse theory, we can determine the topological
deformation of the excursion sets by tabulating the occurrence of
critical values [14]. This framework is general enough for dealing
with a wide variety of noisy multivariate data including brain images
[17, 18], networks [19, 20] and gene expression [21].
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Fig. 1. (a) Heat kernel smoothing of cortical thickness in the hu-
man brain which resulted in smoothly varying estimation of cortical
thickness. Critical values are then easily computed. Critical values
are marked as the white (black) crosses for local minimums (max-
imums). (b) The simplicial complex of the underlying topology of
critical values can be constructed using the Delaunay triangulation
[18].

2. TOPOLOGICAL DATA RECOVERY

For continuous functional measurements fi, its excursion set Bi,h
can be approximated using a collection of d-dimensional simplexes.
Figure 1 shows an example of approximating 2D cortical thickness
measures using the Delaunay triangulation [18]. On the other hand,
networks are inherently topological since the underlying graph data
structures are simplicial complexes [19]. So we can simply treat
Bi,h as a simplicial complex or equivalently a network consisting
of nodes and links. The topological features of Bi,h that persist
over the changing threshold reflects unique characteristics of the
underlying network. However, what we are really interested in is
the persistent topological features that are common across differ-
ent excursion sets B1,h, · · · , Bn,h. This requires a new statistical
framework for network modeling. From now on, we will explicitly
treat Bi,h as a network and focus on network modeling but our new
framework should work for any type of measurements.

Network modeling. Let p be the number of nodes in the net-
work. In most applications, the number of nodes are expected to be
larger than the number of observations n, which gives an underdeter-
mined system. The i-th measurement fi is then discretely sampled
at p nodes, which we will simply index by integers. To simplify the
notation, we denote xij = fi(j). At node j, we have the random
variable xj , which is realized by the random sample x1j , · · · , xnj .
We will denote this realization as xj = (x1j , · · · , xnj)′. The col-
lection of random variables xj are assumed to be distributed with
mean zero and covariance Σ = (σij) i.e.

Exi = 0, E(xixj) = σij .

If Exi 6= 0, we can always center the data by translation. The corre-
lation γij between the two nodes i and j is given by

γij =
σij√
σiiσjj

.

By thresholding the correlation, we can establish a link between two
nodes. However, there is a problem with this simplistic approach in
that it fails to explicitly factor out the confounding effect of other
nodes. To remedy this problem, partial correlations can be used in
factoring out the dependency of other nodes [22, 23, 24, 25, 26].

Fig. 2. (a) Given 3D functional measures fi = µ + εi, we detect
the regions of significant signal µ > 0. In the random field theory
[13], we compute the test statistic T out of fi and determine the
topological change of the excursion set Ah = {x ∈ M : T (x) >
h} as we increase the threshold h. (b) This process determines the
overall type-I error. On the other hand, what we are proposing is to
determine the topological structure of the individual excursion sets
Bi,h = {x ∈ M : fi(x) > h} first. Then construct a statistical test
on the topological change of Bi,h as we change threshold h.

If we denote the inverse covariance matrix as Σ−1 = (σij), the
partial correlation between the nodes i and j while factoring out the
effect of all other nodes is given by

ρij = − σij√
σiiσjj

. (4)

Equivalently, we can compute the partial correlation via a linear
model as follows. Consider a linear model of correlating measure-
ment at node i to all other nodes:

xi =
X
j 6=i

βijxj + εi. (5)

The parameters βij are estimated my minimizing the sum of squared
residual of (5)

L(β) =

pX
i=1

‖xi −
X
j 6=i

βijxj‖2 (6)

in a least squares fashion. If we denote the least squares estimator
by cβij , the residuals are given by

ri = xi −
X
j 6=i

cβijxj . (7)

The partial correlation is then obtained by computing the correlation
between the residuals of the model fit (5) [22, 27, 26]:

ρij = E
ˆ
(ri − Eri)(rj − Erj)

˜
.

The minimization of (6) is exactly given by solving the normal
equation:

xi =
X
j 6=i

βijxj , (8)



which can be turned into standard linear form y = Aβ [28]. Note
that (8) can be written as

xi = [x1, · · · ,xi−1,0,xi+1, · · · ,xp]| {z }
X
−i

0BBB@
βi1
βi2

...
βip

1CCCA
| {z }

βi

,

where 0n×1 is a column vector of all zero entries. Then we have0BBB@
x1

x2

...
xp

1CCCA
| {z }
ynp×1

=

0BBB@
X−1 0 · · · 0
0 X−2 · · · 0
...

...
. . .

...
0 0 · · · X−p

1CCCA
| {z }

A
np×p2

0BBB@
β1

β2

...
βp

1CCCA
| {z }
β

p2×1

, (9)

where A is a block diagonal matrix and 0n×p is a matrix of all zero
entries.

Compressed sensing. However, there is a serious problem with
the least squares estimation framework. Since n � p, this is a sig-
nificantly underdetermined system. This is also related to the co-
variance matrix Σ being singular so we cannot just invert the covari-
ance matrix in (4). So we need to regularize (9) by incorporating l1
LASSO-penalty J [29, 26, 28]:

J =
X
i,j

|βij |.

The sparse estimation of βij is then given by minimizing L + λJ .
Since there is dependency between y and A, (9) is not exactly a
standard compressed sensing problem. Nevertheless, as a first order
exploratory analysis, we will undergo the investigation as if they are
independent as has been done in others [26, 28]. It should be in-
tuitively understood that the sparsity makes the linear equation (8)
less underdetermined. The larger the value of λ, the more sparse the
underlying topological structure gets. Since

ρij = βij

r
σii

σjj
,

the sparsity of βij directly corresponds to the sparsity of ρij , which
is the strength of the link between nodes i and j [26, 28]. Once the
sparse partial correlation matrix ρ is obtained, we can simply link
nodes i and j, if ρij > 0 and assign the weight ρij to the edge. This
way, we obtain the weighted graph. To simplify the problem, we
will only consider positive partial correlations ρ+ (Figure 3). Since
the partial correlation matrix is likely to be very sparse, the resulting
weighted graph will have an easily interpretable topological struc-
ture.

3. BRAIN NETWORK MODELING

The majority of functional and structural connectivity studies in
brain imaging are usually performed following the standard analysis
framework [30, 31, 32, 33]. From 3D whole brain images, n regions
of interest (ROI) are identified and serve as the nodes of the brain
network. Measurements at ROIs are then correlated in a pair-wise
fashion to produce the connectivity matrix of size n × n. The
connectivity matrix is then thresholded to produce the adjacency
matrix consisting of zeros and ones that define the link between two

Fig. 3. Partial correlation estimation using least squares estimation
(left) and LASSO with λ = 100 (right). Only positive correlations
are shown. The LASSO framework reduces the number of links in
the network by forcing the sparsity on partial correlation.

nodes. The binarized adjacency matrix is then used to construct the
brain network. Then various graph complexity measures such as de-
gree, clustering coefficients, entropy, path length, hub centrality and
modularity are defined on the graph and the subsequent statistical
inference is performed on these complexity measures.

For a large number of nodes, simple thresholding of correlation
will produce a large number of links which makes the interpretation
difficult. For example, for 3 × 105 voxels in an image, we can pos-
sibly have a total of 9 × 1010 links in the graph. For this reason we
used the compressed sensing framework in obtaining a far smaller
number of significant links.

Application. We have applied the method to a group of 33 nor-
mal control (NC) subjects. T1-weighted MRIs were collected us-
ing a 3T GE SIGNA scanner. Details on the image preprocessing
pipelines are explained in [34]. The Jacobian determinant of defor-
mation from individual MRI to a template is computed at each voxel.
169 voxels in the white matter are uniformly selected to form nodes
of the network. We have sparsely estimated the partial correlation
of the Jacobian determinants across nodes (Figure 3). This is a huge
l1-minimization problem and requires to estimate a total of 1692 pa-
rameters. For instance, the matrix A is of size 5577 × 28561. We
have used the interior-point method with various λ values in sparsely
estimating ρ+ [35]. Using ρ+

ij as link weights, we can construct the
weighted graphs (Figure 4).

4. DISCUSSIONS

We have presented a novel framework that formulates signal de-
tection as an underlying topological structure recovery. Functional
measurements are represented as simplicial complexes or networks.
The strength of the links between nodes is measured using partial
correlations. The compressed sensing framework is used to sparsely
estimate the partial correlations and obtain sparse topological struc-
tures. The sparse topological structures are easier to interpret as
demonstrated in brain network modeling.

However, this new framework has a serious computational bot-
tleneck. For n measurements over p nodes, it is required that we
solve a linear system with an extremely large A matrix of size np×
p2, so that the complexity of the problem increases by a factor of p3!
Consequently, for a large number of nodes, the problem immediately
becomes almost intractable for a small computer. For example, for
1 million nodes, we have to compute 1 trillion possible pairwise re-
lationships between nodes. One practical solution is to modify (5)



Fig. 4. Structural brain network of 33 control subjects. LASSO-penalty is used for various λ values from 1 to 100. Increasing the λ value
increases the sparsity of connections and, in turn, simplifies the topological structure of the network. Persistent topological features such as
Betti numbers over increasing λ can be used in the characterization of brain networks [20]

so that the measurement at node i is represented more sparsely over
some possible index set Si:

xi =
X
Si

βijxj + εi.

making the problem substantially smaller.
An alternate approach is to simply follow the homotopy path,

which enables to add network links one by one with a very limited
increase of computational complexity so we do not need to compute
β repeatedly from scratch [36, 37, 38]. The trajectory of the optimal
solution β in LASSO follows a piecewise linear path as we change
λ. By tracing the linear path, we can substantially reduce the com-
putational burden of reestimating β when λ changes.
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