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Abstract

We present a computational framework for analyzing
brain hemispheric asymmetry without any kind of image
flipping. In almost all previous literature, to perform brain
asymmetry analysis, it was necessary to flip 3D magnetic
resonance images (MRI) and establish the hemispheric cor-
respondence by registering the original image to the flipped
image. The difference between the original and the flipped
images is then used as a measure of cerebral asymmetry. In-
stead of physically flipping MRI and performing image reg-
istration, we construct the global algebraic representation
of cortical surface using the weighted spherical harmonics.
Then using the inherent angular symmetry present in the
spherical harmonics, image flipping is done by changing
the sign of the asymmetric part in the representation. The
surface registration between hemispheres and different sub-
jects is done algebraically within the representation itself
without any time consuming numerical optimization. The
methodology has been applied in localizing the abnormal
cortical asymmetry pattern of a group of autistic subjects
using the logistic discriminant analysis that avoids the tra-
ditional hypothesis driven statistical paradigm.

1. Introduction

Previous MRI neuroanatomical studies have mainly
flipped the whole brain 3D MRI to obtain the mirror re-
flected MRI with respect to the midsaggital cross section
[2, 21]. The anatomical correspondence across the hemi-
spheres is established and the normalized asymmetry index
of type (L-R)/(L+R) is used at each voxel for quantification.
Then the asymmetry index is fed into a statistical proce-
dure, mainly general linear model (GLM), and a hypothesis
on the estimated GLM parameters is tested and the result-
ing P-value is projected onto a template at each voxel. The
thresholded P-value map is then used as a decision rule for

determining regions of significant signal [31].

We present a radically different framework from this
well established brain asymmetry analysis paradigm. Our
proposed asymmetry analysis framework starts with seg-
menting the cortical surfaces using a deformable algorithm
and obtaining cortical thickness that measures the distance
between outer and inner cortical surfaces. Cortical thick-
ness varies locally by region and is likely to be influenced
by aging, development and clinical status [3]. An alge-
braic representation of cortical surface is constructed us-
ing weighted spherical harmonics. Inter-hemispheric and
between-subject surface registrations are done within the
algebraic representation without any numerical optimiza-
tion that is needed for many previous surface registration
techniques [11, 12, 25, 30]. The previous methods solve a
complicated optimization problem of minimizing the mea-
sure of discrepancy between two surfaces while maximiz-
ing the smoothness of deformation. Our proposed technique
does not try to normalize the original cortical meshes, which
are highly noise, but instead normalize the algebraic repre-
sentation of the cortical surfaces. Utilizing the property of
Hilbert space, on which the algebraic representation resides,
optimization is performed algebraically without the usual
numerical optimization. Then instead of physically mirror
reflecting the original MRI, the algebraic surface represen-
tation is mirror reflected by simply changing the sign in the
representation. Then the inter-hemispheric correspondence
can be established and the normalized asymmetry index on
cortical thickness can be computed at each mesh vertex.

The most closely related work to our proposed method is
done by Gerig et. al [15]. In Gerig et al., two independent
spherical harmonic representations are obtained for both
the left and right amygdala-hippocampal complex. Then
global asymmetry is measured between two spherical har-
monic representation using the mean squared distance. In
our study, we are establishing local asymmetry at each mesh
vertex within a single spherical harmonic representation.
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Our first contribution is showing that the localized asym-
metry index can be explicitly given in terms of the ratio of
sum of negative and positive order harmonics (Theorem 4)
so that readers can directly compute the asymmetry index
without concern about surface correspondence. Consider-
ing a lot of anatomical objects such as cortex, mandible and
skull can be represented using only one spherical harmonic
representation, the proposed method is highly applicable in
various medical imaging applications.

Once we obtain the local asymmetry index, it is fed
into the logistic discriminant framework [18] at each mesh
vertex. Considering the sample size is relatively small
compared to feature vectors that characterize complex cor-
tical geometry, many previous classification approaches
[19, 28, 29] used a brute force dimensionality reduction
technique such as the principal component analysis in re-
ducing the dimension of the feature vectors. On the other
hand, our proposed formulation can locally discriminate
shape features at each mesh vertex without additional di-
mensionality reduction procedures. The methodology has
been applied in localizing the abnormal cortical asymme-
try pattern in a group of autistic subjects and obtain the lo-
calized discriminant power up to 85.7% at some vertices.
Unlike the traditional statistical hypothesis driven approach
[31], since there is no null hypothesis to test, there is no
need to compute P-values. The proposed localized logistic
discriminant analysis is our second contribution.

2. Preliminary

The human cerebral cortex has the topology of a 2D
highly convoluted grey matter shell of average thickness of
3mm. The outer boundary of the shell is called the outer
cortical surface while the inner boundary is called the in-
ner cortical surface. Cortical surfaces are segmented from
magnetic resonance images (MRI) using a deformable sur-
face algorithm and mapped to unit sphere S2 [7, 23]. The
resulting surfaces are represented as high resolution triangle
meshes with the average inter-vertex distance of 3mm.

Let ζ be the bijective mapping from u = (uj) ∈ S2

to the point p = (pj) ∈ M, the outer cortical surface.
The mapping ζ enforces the one-to-one correspondence be-
tween the outer cortical mesh and the spherical mesh. The
coordinates u is parametrized by Euler angles (θ, ϕ):

(u1, u2, u3) = (sin θ cosϕ, sin θ sin ϕ, cos θ)

with Ω = (θ, ϕ) ∈ N = [0, π] ⊗ [0, 2π). The polar angle θ
is the angle from the north pole and the azimuthal angle ϕ
is the angle along the horizontal cross section. We further
parameterize surface M with Euler angles in such a way
that the plane u2 = 0, which passes through ϕ = 0, π, is
mapped to the midsagittal cross section of the brain (Figure
1), i.e.

p(Ω) = ζ ◦ u(Ω).

Figure 1. Cortical surface parameterization using Euler angles.
The plane u2 = 0, which passes through ϕ = 0, π, is mapped
to the midsagittal cross section of the brain. The north (θ = 0)
and the south (θ = π) poles are chosen along the midsagittal cross
section.

The coordinates p(Ω) are expected to be noisy. To
filter out mesh noisy, we perform diffusion-based surface
smoothing [1, 6, 8]. However, our formulation differs from
all previous diffusion smoothing in a sense that we analyti-
cally smooth by explicitly solving heat diffusion:

∂f

∂σ
= Δf, f(Ω, σ = 0) = p(Ω), (1)

where Δ is the spherical Laplacian.
The solution of (1) is given in terms of the integral trans-

form called heat kernel smoothing [27] as

Kσ ∗ p(Ω) =
∫

S2
Kσ(Ω, Ω′)p(Ω′) dμ(Ω′), (2)

where dμ(Ω) = sin θdθdϕ and Kσ is the heat kernel with
bandwidth σ. Heat kernel smoothing (1) has the spectral
representation with respect to the spherical harmonics Ylm

of degree l and order m. The explicit form of Ylm is given
in [9]. With respect to the inner product

〈f, g〉 =
∫

S2
f(Ω)g(Ω) dμ(Ω),

Ylm form the orthonormal basis in L2(S2), the space of
square integrable functions. The L2-norm is defined as

‖f‖ = 〈f, f〉1/2.

For a vector functional f = (fj), the norm is similarly de-
fined as

‖f‖ = (
∑

j

‖fj‖2)1/2.

Using spherical harmonics, the heat kernel is written as

Kσ(Ω, Ω′) =
∞∑

l=0

l∑
m=−l

e−l(l+1)σYlm(Ω)Ylm(Ω′). (3)



By substituting (3) into equation (2) and exchanging the in-
tegral with the summation, heat kernel smoothing (2) has
the following spectral representation:

Kσ ∗ p(Ω) =
∞∑

l=0

l∑
m=−l

e−l(l+1)σplmYlm(Ω), (4)

where plm = 〈p, Ylm〉 are the spherical harmonic coeffi-
cients. The finite expansion of (4) has the Hilbert space
interpretation given in Theorem 1.

Theorem 1 Let the subspace

Hk = {
k∑

l=0

l∑
m=−l

βlmYlm : βi ∈ R} ⊂ L2(S2),

which is spanned by up to k-th degree spherical harmonics.
Let h0 be the solution of (1). Then the closest function h in
the subspace Hk to h0 is given by

k∑
l=0

l∑
m=−l

e−l(l+1)σplmYlm(Ω) = arg min
h∈Hk

‖h − h0‖.

Unlike previous literature [1, 6, 8] that solves surface
diffusion numerically using the finite difference scheme,
Theorem 1 provides a new framework for performing sur-
face diffusion by computing a series expansion. The ad-
vantage of this new framework is the ability to explicitly
model surface diffusion using the Karhunen-Loeve expan-
sion of a random field [22]. The Fourier coefficient vector
plm can be modeled to follow independent multivariate nor-
mal N(μlm, D), where the covariance matrix is of the form
D = diag(σ2

l1, σ
2
l2, σ

2
l3). Within the same degree, equal co-

variance is assumed. This model assumption is equivalent
to the following.

k∑
l=0

l∑
m=−l

e−l(l+1)σplmYlm

=
k∑

l=0

l∑
m=−l

e−l(l+1)σμlmYlm

+
k∑

l=0

l∑
m=−l

e−l(l+1)σεlmYlm,

where εlm are independent multivariate normal ∼ N(0, D).
The error term is the form of the Karhunen-Loeve expan-
sion [22]. The normality assumption was tested using the
Jarque-Bera statistic [20] for the parameters (k = 42, σ =
0.001) used in the study. For instance, 10 out of total
(42 + 1)2 = 1, 849 Fourier coefficients of x-component in
plm do not show normality at significance level α = 0.05.

Figure 2. Left: cross correlation of up to 42 degrees. Each rows
and columns are arranged in a vectorized fashion starting with
(l, m) = (0, 0), (1,−1), (1, 0), (1, 1), · · · . Right: enlargement of
small white square in the top left corner of the left figure. The av-
erage correlation is 0.16 and the most of correlations are extremely
low indicating the independence of Fourier coefficients.

Since uncorrelated Gaussian random variables are indepen-
dent, we have also computed the cross correlation of all
18492 pairs of coefficients to check independence (Figure
2). Most pairs show very low correlation and the average
correlation is 0.16 indicating the independence assumption
is valid.

The finite series expansion given in Theorem 1 is called
the weighted spherical harmonic representation [7]. The
weighted spherical harmonic representation shares similar-
ity with the harmonic descriptors[14, 16, 28] which has
been used to model simpler anatomical objects such as hip-
pocampus [28] and ventricles [14] in brain imaging.

2.1. Model parameter estimation

There are many available methods for computing Fourier
coefficients [5, 14, 16, 28]; however, these methods are not
suitable for computing the Fourier coefficients for a cortical
mesh due to fairly large number of vertices. The fast Fourier
transform [5, 16] usually needs a predefined regular grid so
if the mesh topology is different for each cortical mesh, a
time consuming interpolation is needed. The least squares
method [14, 28] is also not suitable when the number of
mesh vertices and the degree of the expansion are large.

Consider the functional data f ∈ L2(S2). The functional
data f is measured at the finite number of mesh vertices
Ω1, · · · , Ωn. Then the weighted Fourier series representa-
tion evaluated at Ωj is

f(Ωj) =
k∑

l=0

l∑
m=−l

e−λ(λ+1)σflmYlm(Ωj). (5)

The system of equations (5) can be written in a matrix form.
Let

f = (f(Ω1), · · · , f(Ωn))′

β = (f00, f1,−1, f1,0, f1,1, · · · , fkk)′.

Y = (e−l(l+1)σYlm(Ωj)).



Matrix Y is the size of n × (k + 1)2. The columns of
Y are Y00, Y1,−1, Y1,0, Y1,1, · · · evaluated at Ω1, · · · , Ωn.
Then the system of equations (5) can be written as f = Yβ,
where the Fourier coefficients are estimated as

β̂ = (Y′Y)−1Y′f . (6)

For most cortical surface segmentation algorithms [12, 23],
n > 40, 000 and the matrix size can easily reach the
physical memory limit of the most personal computers for
k ≥ 42. To address this issue, we have developed an it-
erative method for solving a large least squares problem by
decomposing it into smaller least squares problems [7]. The
algorithm shares similarity to the matching pursuit method
[24] in the underlying Hilbert space construction but differs
in numerical implementation and motivation. While our al-
gorithm was developed to avoid the computational burden
of inverting a huge linear equation, the matching pursuit
method was developed to compactly decompose a time fre-
quency signal into a linear combination of pre-selected pool
of basis functions.

We briefly describe the algorithm. Initially, we estimate
the first coefficient f00 by solving

f(Ωj) = f00Y00(Ωj).

If we let f̂00 to be the least squares estimation, the next set
of coefficients f1,−1, f1,0, f1,1 are estimated by solving

f(Ωj) − f̂00Y00(Ωj) =
1∑

m=−1

e−1(1+1)σf1mY1m(Ωj).

The subsequent set of coefficients f2,−2, · · · , f2,2 are esti-
mated by solving

f(Ωj)−
1∑

l=0

l∑
m=−l

f̂lmYlm(Ωj) =
2∑

m=−2

e−2(2+1)σf2mY2m(Ωj).

At each iteration, the residual of the previous fit is used to
estimate the next set of coefficients. The process continues
until the residual is no longer statistically significant. At
the l-th iteration, the iterative algorithm inverts manageable
smaller (2l−1)×(2l−1) matrix instead of huge (k+1)2×
(k + 1)2 matrix in (6).

2.2. Validation

The weighed Fourier series representation is validated
against analytically constructed ground truth. We have used
the cortical thickness of a subject in constructing the ana-
lytical ground truth. Consider a surface measurement of the
form

g(Ω) =
k∑

l=0

l∑
m=−l

βlmYlm(Ω) (7)

Figure 3. Cortical thickness is simulated from the sample cortical
thickness. The ground truth is analytically constructed from the
simulation. Then the weighted Fourier series representation are
compared against the ground truth. The mean relative error is at
0.0012.

for given βlm. Heat kernel smoothing of g is given as an
exact analytic form, which serves as the ground truth for
validation:

Kσ ∗ g(Ω) =
k∑

l=0

l∑
m=−l

e−l(l+1)σβlmYlm(Ω). (8)

Using the sample cortical thickness data, we simulated
the measurement of the form (7) by computing βlm =
〈g, Ylm〉 (Figure 3 top left). Then we have compared the
weighted Fourier series representation of g against the an-
alytical ground truth (8) along the surface mesh (Figure 3).
We have used σ = 0.001 and the corresponding optimal
degree k = 42 [7]. The relative error is up to 0.013 at
a certain vertex and the mean relative error over all mesh
vertices is 0.0012. Our validation results demonstrates that
the numerical implementation of the weighted Fourier se-
ries representation is sufficiently good.

3. Local Surface Asymmetry Analysis

3.1. Correspondence across hemispheres

Comparing measurements defined at different cortical
surfaces is not a trivial task due to the fact that no two
cortical surfaces are identically shaped. We need to es-
tablish surface correspondence between hemispheres and
between subjects for subsequent statistical analysis. We
present a new surface registration technique utilizing the
Hilbert space property of spherical harmonics. Consider pa-
rameterizations p̂ and q̂ obtained from coordinates p and q
respectively:

p̂(Ω) =
k∑

l=0

l∑
m=−l

e−l(l+1)σplmYlm(Ω),

q̂(Ω) =
k∑

l=0

l∑
m=−l

e−l(l+1)σqlmYlm(Ω).



Figure 4. Representative subjects showing cortical thickness (g), its weighted-SPHARM representation (bg), asymmetry index (A), sym-
metry index (S) and normalized asymmetry index (N ). The Cortical thickness is projected onto the original brain surfaces while all other
measurements are projected onto the 42-th degree weighed Fourier series representation.

Suppose the surface p̂ is deformed to p̂ + d, where d =
(dj) is the displacement vector field to be estimated. We
find optimal displacement d that minimizes the discrepancy
between p̂+d and q̂ in the finite subspace Hk using the L2-
norm:

Theorem 2 Given parameterization p̂ and q̂, the optimal
displacement from p̂ to q̂ is

k∑
l=0

l∑
m=−l

e−l(l+1)σ(qlm−plm)Ylm = arg min
dj∈Hk

‖p̂+d−q̂‖.

Theorem 2 shows that the optimal displacement is ob-
tained by taking the difference between two parametric rep-
resentations and matching coefficients of the same degree
and order. Note that we are not taking the difference be-
tween the original noisy surface meshes. Theorem 2 can be
further used to establish the inter-hemispheric correspon-
dence by letting q̂ to be the mirror reflection of p̂.

Theorem 3 If p̂∗ denotes the mirror reflection of p̂ with re-
spect to the midsaggital cross section, the optimal displace-
ment from p̂ to p̂∗ is

−2
k∑

l=0

l∑
m=0

e−l(l+1)σplmYlm = arg min
dj∈Hk

‖p̂ + d − p̂∗‖.

Proof. From the way the spherical coordinates are set up
(Figure 1), we obtain

p̂∗(θ, ϕ) = p̂(θ, 2π − ϕ)

=
k∑

l=0

l∑
m=−l

e−l(l+1)σplmYlm(θ, 2π − ϕ)

=
k∑

l=0

−1∑
m=−l

e−l(l+1)σplmYlm(θ, ϕ)

−
k∑

l=0

l∑
m=0

e−l(l+1)σplmYlm(θ, ϕ).

The last decomposition into negative and positive orders is
obtained from the property of spherical harmonics:

Ylm(θ, 2π − ϕ) =
{ −Ylm(θ, ϕ), −l ≤ m ≤ −1,

Ylm(θ, ϕ), 0 ≤ m ≤ l.
(9)

Then letting q̂ = p̂∗, we obtain the result. �
Theorem 3 shows that the optimal inter-hemispheric cor-

respondence is obtained by matching the parameterization
p̂(θ, ϕ) to p̂(θ, 2π − ϕ). Again note that we are not try-
ing to match the original mesh coordinates p(θ, ϕ) but their
algebraic representations.

3.2. Local asymmetry index

Theorem 3 enables us to establish the inter-hemispheric
correspondence and, in turn, to construct cortical thickness
based asymmetry index. Now we present our main contri-
bution.



Theorem 4 If ĝ is the weighted spherical harmonic repre-
sentation of cortical thickness, the normalized asymmetry
index of type (L-R)/(L+R) is given by

N(θ, ϕ) =
∑k

l=1

∑−1
m=−l e

−1(l+1)σglmYlm(θ, ϕ)∑k
l=0

∑l
m=0 e−l(l+1)σglmYlm(θ, ϕ)

. (10)

Proof. At each position p̂(θ, ϕ), we have cortical thick-
ness ĝ(θ, ϕ). Then from Theorem 3, we match ĝ(θ, ϕ) to
ĝ(θ, 2π − ϕ) for the hemispheric correspondence. From
(9), we obtain

ĝ(θ, 2π − ϕ) =
k∑

l=1

−1∑
m=−l

e−1(l+1)σglmYlm(θ, ϕ)

−
k∑

l=0

l∑
m=0

e−l(l+1)σglmYlm(θ, ϕ)

Comparing the expansions ĝ(θ, ϕ) and ĝ(θ, 2π−ϕ), we see
that the negative order terms are invariant while the positive
order terms change the sign. Computing

N(θ, ϕ) =
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

directly, we obtain the result. �
The numerator in the expression (10) is the sum of all

negative orders while the denominator is the sum of all pos-
itive and the 0-th orders. The larger the value of the index,
the larger the amount of asymmetry.

Following the proof of Theorem 4, ĝ(θ, ϕ) can be de-
composed into symmetric S and antisymmetric A parts so
that

ĝ(θ, ϕ) = S(θ, ϕ) + A(θ, ϕ),

where

S(θ, ϕ) =
1
2

[
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

]

=
k∑

l=1

−1∑
m=−l

e−1(l+1)σglmYlm(θ, ϕ)

and

A(θ, ϕ) =
1
2

[
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)

]

=
k∑

l=0

l∑
m=0

e−l(l+1)σglmYlm(θ, ϕ).

Figure 4 shows the asymmetry index for selective subjects.

3.3. Local discriminant analysis

For each subject, its normalized asymmetry index
N(θ, ϕ) is computed and modeled as a zero mean Gaussian

Figure 5. Discriminant power projected on top of the average cor-
tical surface. The discriminant power ranges from 32.1 to 85.7%.
The logistic discriminant analysis framework provides an alterna-
tive to the traditional corrected P-value approach in the two group
comparison setting.

random field. For the traditional group comparison between
autistic and normal control subjects, the T statistic at each
point (θ, ϕ) would be constructed. Since T statistics at dif-
ferent points are correlated, it becomes a multiple compari-
son problem [4, 26, 31]. The corrected P-value accounting
for spatially correlated test statistics is determined by com-
puting the superima distribution of the T random field [31],
i.e.

P
[

sup
(θ,ϕ)∈S2

T (θ, ϕ) < h
]
. (11)

Unfortunately, computing the suprima distribution of the
T random field is not an easy task and requires satisfying
many distributional assumptions and the estimation of the
smoothness of the random field. If we can come up with
a different framework that does not use the traditional hy-
pothesis testing paradigm, there is no need to compute the
P-value. With this as a motivation, we propose a different
approach called the logistic discriminant analysis [13, 18]
that does not require computing the P-value and still is able
to detect the regions of abnormal asymmetry pattern in the
autistic subjects. Unlike previous discriminant techniques
[19, 28, 29] that tried to classify preselected feature vec-
tors, our approach does not require any preselected feature
vectors and performs the classification at each mesh vertex.

Let ni(θ, ϕ) denotes the normalized asymmetry index
for the i-th subject at a particular point (θ, ϕ). Let Yi(θ, ϕ)
be the clinical state of the i-th subject modeled as a
Bernoulli random variable with parameter πi(θ, ϕ). Yi = 1
if the i-th subject is autistic with probability πi while Yi = 0
if the subject is normal with probability 1 − πi. Then
we have the following logistic model at each point (θ, ϕ),
which links the probability of clinical statue πi to the asym-
metry index ni:

log
πi

1 − πi
= β0 + β1ni. (12)

The unknown parameters β(θ, ϕ) = (β0, β1)′ are esti-
mated by maximizing the loglikelihood function L(β) at



each point (θ, ϕ). The loglikelihood function is given by

log L(β) = const. +
n∑

i=1

yi(β0 + β1ni) + log(1 − πi). (13)

Since the loglikelihood function (13) is not easy to maxi-
mize analytically, the Newton-Raphson method is used to
maximize it in an iterative fashion. Starting with an arbi-
trary initial vector β0, we estimate iteratively

βj+1 = βj + I(βj)−1 ∂ log L(β)
∂β

(βj),

where I is the Fisher information matrix [13, 18].
Once we estimated the parameters β(θ, ϕ), we classify

the i-th subject as autistic if P (Yi = 1) > P (Yi = 0),
which is equivalent to the condition πi > 1/2. The classi-
fication error rate γ(θ, ϕ) is estimated by the leave-one-out
cross-validation scheme. Denote e−i(θ, ϕ) as the error rate
for leaving the i-th subject out. Note that e−i = 0 if the
subject is classified correctly while e−i = 1 if the subject is
misclassified. Then the error rate γ is estimated as

γ̂(θ, ϕ) =
1
n

n∑
i=1

e−i.

The discriminant power is then given as 1 − γ̂ and it is dis-
played in Figure 5 localizing the regions of abnormal asym-
metry pattern in autistic subjects.

In order to show that the discriminant power map can
be used as an alterative to the usual P-value map, the sta-
tistical significance of discriminant power is computed us-
ing Presss Q-statistic n(2γ̂ − 1)2, which is asymptotically
distributed as χ2

1 [17]. Figure 6 shows the plot of P-value
of Presss Q-statistic as a function of discriminant power.
Larger discriminant power corresponds to smaller P-value.
For n = 28, the discriminant power of 0.85 corresponds to
the extremely small P-value of 0.0002. To account for mul-
tiple comparisons, this small P-value needed to be corrected
by computing the probability of the superima distribution of
a test statistic similar to (11). However, this is not so triv-
ial. On the other hand, the proposed discriminant power
approach is much easier.

4. Application

Three Tesla T1-weighted MR scans were acquired for 16
high functioning autistic and 12 control right handed males.
The autistic subjects were diagnosed by a trained and cer-
tified psychologist [10]. The average ages are 17.1 ± 2.8
and 16.1 ± 4.5 for control and autistic groups respectively.
The standard image processing steps, such as the inten-
sity non-uniformity correction and the global affine normal-
ization into the Montreal neurological institute stereotaxic

Figure 6. The plot of statistical significance as a function of dis-
criminant power for various sample size n = 10, 28, 100.

space, were performed. Afterwards, an automatic tissue-
segmentation algorithm based on a supervised artificial neu-
ral network classifier was used to segment gray and white
matters. Cortical surface meshes were constructed by a
deformable surface algorithm and cortical thickness g and
mesh vertices p are obtained. Using the bijective mapping
from the unit sphere to the cortical surface, mesh vertices p
were parameterized by Euler angles (θ, ϕ) (Figure 1).

The weighted spherical harmonic representation p̂ and
ĝ for 28 subjects was constructed using the iterative algo-
rithm with bandwidth σ = 0.001 corresponding to k = 42
degrees (Figure 4). The representation has been validated
against the ground truth and shown to perform sufficiently
well with the average relative error of 0.0012 (Figure 3).
The symmetry (S), asymmetry (A) and normalized asym-
metry (N ) indices were computed and projected onto k =
42 degree representation (Figure 4). The normalized asym-
metry index was used in localizing the regions of cortical
asymmetry difference between two groups.

Instead of performing the usual two sample T-test, which
introduces multiple comparison issues [4, 26, 31], logistic
discriminant analysis was performed. At each point, the lo-
gistic model (12) was fitted to link the probability of clinical
status to the asymmetry index. The logistic model was used
to estimate the probability of the asymmetry index belong-
ing to the autistic group. Then we computed the discrimi-
nant power, which is defined as the rate of correct classifi-
cation. The discriminant power was projected onto the av-
erage cortical surface constructed by averaging the Fourier
coefficients of all subjects within the same spherical har-
monics basis using Theorem 2 (Figure 5). The average sur-
face serves as an anatomical landmark for displaying these
indices as well as projecting the logistic discriminant analy-
sis result. The regions of high discriminant power indicates
the likelihood of the regions to exhibit abnormal asymmetry



in the autistic subjects.
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