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ABSTRACT

Surface data such as the segmented cortical surface of the
human brain plays an important role in medical imaging.
To increase the signal-to-noise ratio for data residing on the
brain surface, the data is usually diffused. Most of diffusion
equation approach for triangulated mesh data is based on the
finite element method and a system of linear equations are
iteratively solved without the explicit representation of the
Laplace-Beltrami operator. Such implicit formulation re-
quires inverting large sparse matrix that is required in most
finite element methods.

The novelty of our paper is in the explicit representation
of the Laplace-Beltrami operator derived from the finite el-
ement method itself. The Laplace-Beltrami operator is ex-
pressed as a weighted averaging operator where the weights
are expressed in terms of the interior angles and the area of
triangles. The weights are computed by actually solving the
system of linear equations in the finite element method and
inverting a matrix in a computational algebra system MAPLE.
Afterwards the diffusion equation is solved via a simple fi-
nite difference scheme that speed up computation.

1. INTRODUCTION

When solving a diffusion equation on a curved surface as a
way to increase the signal-to-noise ratio (SNR), the Lapla-
cian somehow has to incorporate the geometry of the curved
surface. The extension of the Euclidean Laplacian to an ar-
bitrary Riemannian manifold is called the Laplace-Beltrami
operator [5]. Although diffusion equations are widely used
to smooth out data in imaging analysis [7, 8, 9, 10, 11],
there is a very few paper that uses diffusion to smooth out
data residing on the brain surface [1, 3]. Many previous
work involving diffusion are the problem of surface fairing
[6, 11] or anisotropic smoothing of intensity images where
the image intensities are taken as surfaces to be smoothed
[9].

In this paper, we show how to represent the Laplace-
Beltrami operator explicitly for an arbitrary triangular sur-

face mesh using the finite element method (FEM). After-
wards the explicit representation of the Laplacian is used in
the finite difference method (FDM) for solving a diffusion
equation iteratively on the human brain surface for the cor-
tical thickness and curvature measurements [3]. A similar
discrete representation that is based on geometric arguments
can be found in [6, 12].

2. LAPLACE-BELTRAMI OPERATOR

Suppose we have an orientable smooth twice-differentiable
(C2) 2-dimensional surface S in R3. Then we have a pa-
rameterization of S:

X(u) = {x1(u), x2(u), x3(u) : u = (u1, u2) ∈ D}

for some planar domain D. Let TpS be a tangent space at
any p = X(u) ∈ S such that partial derivatives

X1(u) = ∂u1X(u),X2(u) = ∂u2X(u)

form a basis in Tp. Any vector dξ ∈ TpS can be written as
dξ = du1X1 + du2X2 for some constants du1 and du2 and
the length of the vector dξ is

dξ2 ≡ 〈dξ, dξ〉 =
∑

i,j

gijduiduj , (1)

where the inner products gij = 〈Xi,Xj〉 are called the Rie-
mannian metric tensor. Then the Laplace-Beltrami operator
∆X corresponding to the surface parameterization X is de-
fined as

∆XF =
1

|g|1/2

2∑

i,j=1

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
. (2)

Since the Laplace-Beltrami operator is self adjoint with re-
spect to the L2 norm for any C2 functions F and G on S, it
can be written as
∫

S
G∆FdS = −

∫

S
〈∇F,∇G〉 dS =

∫

S
F∆GdS. (3)
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3. FINITE ELEMENT METHOD

Let NT be the number of triangles in the triangular mesh
Ŝ that is the discrete estimation of true surface S. We seek
an approximate solution Fi in triangle Ti such that the so-
lution Fi(x, t) is continuous across neighboring triangles.
The approximate solution F for the whole region is then

F (x, t) .=
NT∑

i=1

Fi(x, t). (4)

A slightly different formulation of FEM for the surface flat-
tening problem is given in [2]. Let pi1 , pi2 , pi3 be the ver-
tices of element Ti. In Ti, we interpolate Fi linearly by

Fi(x, t) =
3∑

j=1

ξij (x)F (pij , t), (5)

where nonnegative ξik are given by the barycentric coordi-
nates [13]. In the barycentric coordinates, any point x ∈ Ti

is uniquely determined by two conditions:

x =
3∑

k=1

ξik(x)pik ,
3∑

k=1

ξik(x) = 1.

3.1. Discrete Diffusion Equation

Let G be an arbitrary piecewise linear function given by

G(x) =
NT∑

i=1

ξi1(x)Gi1 + ξi2(x)Gi2 + ξi3(x)Gi3 ,

where Gik = G(pik) are the values of function G evalu-
ated at vertex pik of Ti. Another piecewise linear function
F (x, t) is given similarly so that Fik = F (pik , t).

Then from equation (3), the integral version of diffusion
equation ∂tF = ∆F can be written as

∫

Ti

G∂tF dT = −
∫

Ti

〈∇F,∇G〉 dT . (6)

The left-hand term in (6) is

∫

Ti

G∂tF dT =
3∑

k,l=1

Gik∂tF (pil , t)
∫

Ti

ξikξil dT

= [Gi]′[Ai]
d

dt
[Fi],

where [Gi] = (Gi1 , Gi2 , Gi3)′, [Fi] = (Fi1 , Fi2 , Fi3)′ and
3 × 3 matrix [Ai] = (Ai

kl), A
i
kl =

∫
Ti

ξikξil dT . It can be
shown that

[Ai] =
|Ti|
12




2 1 1
1 2 1
1 1 2



 ,

Fig. 1. A typical triangular elements.

where |Ti| is the area of the triangular element Ti [13]. Sim-
ilarly the right-hand term in (6) can be written as

∫

Ti

〈∇F,∇G〉dT =
3∑

k,l=1

GikF (pil , t)
∫

Ti

〈∇ξik ,∇ξil〉dT

= [Gi]′[Ci][Fi],

where [Ci] = (Ci
kl), C

i
kl =

∫
Ti
〈∇ξik ,∇ξil〉 dT. Since Ti

is planar, the gradient ∇ξik becomes the standard planar
gradient. Following [13, 14], it can be shown that 2[Ci] is
the matrix of the following form:



cot θi2 + cot θi3 − cot θi3 − cot θi2

− cot θi3 cot θi1 + cot θi3 − cot θi1

− cot θi2 − cot θi1 cot θi1 + cot θi2



 ,

where θik is the interior angle of vertex pik . Equating the
left and right hand sides, we get

[Gi]′[Ai]
d

dt
[Fi] = −[Gi]′[Gi][Fi]. (7)

Since the equation (7) should be satisfied for an arbitrary
vector [Gi], we have a system of ordinary differential equa-
tions (ODE) given by

d[Fi]
dt

= −[Ai]−1[Ci][Fi] for all i. (8)

3.2. Assembling Elements

Having discretized an element, the next step is to assemble
all such elements in m incident triangles around vertex p.
Let p1, · · · , pm be the m neighboring vertices around p =
p0 in the counter-clockwise direction. Let p, pi, pi+1 be the
vertices of the element Ti (Figure 1). Then from combining
elements, we have

∫

T1∪···∪Tm

〈∇F,∇G〉 dT =
m∑

i=1

∫

Ti

〈∇F,∇G〉 dT

= [G]′[C][F ],
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where [F ] = [F (p, t), F (p1, t), · · · , F (pm, t)]′ and [G] =
[G(p), G(p1), · · · , G(pm)]′. The matrix [C] = (Cij) is
called the global coefficient matrix, which is the assemblage
of individual element coefficients. The contribution to Cij

comes from all elements containing vertices i and j. In the
case of a hexagonal triangulation in Figure 1, [C] is given
by

Similarly
∫

T1∪···∪Tm

G
∂F

∂t
dT = [G]′[A]

d[F ]
dt

,

where [A] = (Aij) has the same structure as [C], i.e. write
A01 = A1

01 + A6
01 instead of C01 = C1

01 + C6
01. Equating

the above equations we have

[G]′[A]
d[F ]
dt

= −[G]′[C][F ]. (9)

Since equation (9) should be satisfied for an arbitrary piece-
wise linear function G, we have a discrete diffusion equa-
tion on m elements T1, · · · , Tm given by

d[F ]
dt

= −[A]−1[C][F ]. (10)

At first glance, it seems like we need to solve a system of
linear equations iteratively. Note that the first row of the si-
multaneous ODE (10) gives the discrete diffusion equation
at the vertex p = p0:

dF (p, t)
dt

= −
m∑

i,k=0

A−1
0k CkiF (pi, t), (11)

where A−1
0k is the 0k-th element of A−1. Comparing this

with the diffusion equation ∂tF (p, t) = ∆F (p, t), we can
see that the right-hand side of equation (11) is the discrete
estimation of Laplacian of function F evaluated at vertex
p. Simplifying the matrix computation using the computa-
tional algebraic system MAPLE, we have the FEM estimation
for the Laplace-Beltrami operator given by

∆̂F (p) =
m∑

i=1

wi

(
F (pi) − F (p)

)
(12)

with the weights wi = (cot θi + cot φi)/|T |, where θi and
φi are the two angles opposite to the edge pi − p and |T | =∑m

i=1 |Ti| is the sum of the areas of the incident triangles
(Figure 1).

Fig. 2. Diffusion smoothing was applied to smooth out
the mean curvature of the brain cortex and projected onto
a sphere to show how hidden sulcal pattern can be enhanced
over time. (a) initial mean curvature. (b) after 20 iterations
with δt = 0.2. (c) after 100 iterations we are beginning to
see much clear sulcal pattern.

4. FINITE DIFFERENCE METHOD

The diffusion equation is solved by the finite difference scheme:

F (p, tn+1) = F (p, tn) + (tn+1 − tn)∆̂F (p, tn) (13)

where ∆̂F (p, tn) is estimated by (12). We may fix the it-
eration step size tn+1 − tn = δt. For the convergence of
the finite difference scheme, δt is chosen to satisfy the har-
monic condition

min
i

F (pi, tn) ≤ F (p, tn + δt) ≤ max
i

F (pi, tn). (14)

For more detailed convergence condition, see [4].
Note that the Laplace-Beltrami operator in the confor-

mal coordinate system [5] (u1, u2) can be written as

∆ =
∂2

∂(u1)2
+

∂2

∂(u2)2
.

So we can define the FWHM of diffusion smoothing lo-
cally as the FWHM of the corresponding Gaussian kernel in
the conformal coordinate system. Then diffusion smoothing
with N iterations and the step size δt would be equivalent
to Gaussian kernel smoothing with

FWHM = 4(ln 2)1/2
√

Nδt.

Computing the linear weights for the Laplace-Beltrami op-
erator takes a fair amount of time in MATLAB but once the
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Fig. 3. Left: cortical thickness computed at the posterior
right hemisphere of the autistic brain. Right: Diffusion
smoothing estimation of the cortical thickness metric. We
can see huge noise reduction. Gyri have thicker gray matter
compared to thinner sulci.

weights are computed, it is applied through the whole itera-
tion repeatedly and the actual finite difference scheme takes
less than one minute for 100 iterations in Pentium 4.

5. CONCLUSIONS

Based on the FEM, we discretized a diffusion equation in a
triangular mesh patch centered around a vertex and solved
a system of equation using a computational algebraic sys-
tem MAPLE. It turns out that the Laplace-Beltrami operator
can be represented as a weighted averaging operation where
the weights are given in terms of the interior angles and
the areas of triangles. Based on the FEM estimate for the
Laplace-Beltrami operator, we iteratively run the finite dif-
ference with a temporal step size that satisfies a convergence
criterion. This diffusion smoothing would be highly useful
in smoothing fMRI data [1] and anatomical data [3] that are
residing on the fixed brain surface and would be useful in
statistical inference based on the random fields theory.
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