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Class schedule:

Take home exam on December 2. Due to popular
demand, exam schedule has been changed.

There is no class on December 3. Exam will be emailed
to you by December 3 9:00am or earlier. Your solution
should be emailed to me in PDF with accompanying

MATLAB code (zip it) by December 6 9:00am. It will
take minimum 30 hours to finish.

Oral exam on December 10.
Send me your talk title by next December 2.

Final report due December 17.

Send PDF by 9:00pm. There will be penalty for late
reports. Do not submit twice. First submission will be
graded.



Image Complexity

Motivation: why we are interested in studying
image complexity?

Image complexity can characterize an image
and the underlying clinical status (existence of
cancer, Alzheimer's disease).

The most widely used image complexity
measure is the fractal dimension (FD).

We will study fractals and fractal dimension.



Use of Fractals

*Quantification of biological systems
(most complex and chaotic in science).

*Fractal image compression: it can

achieve the compression ratio of up to
600:1.

Fractal rendering: realistic computer
rendering of clouds, rocks, shadows



References:

Fractals and Chaos

Simplified for the Life Sciences

Larry S. Liebovitch

Fractals and Chaos and
Simplified for the Life Sciences

Larry S. Liebovitch
Oxford Univ. Press, 1998

www.ccs.fau.edu/~liebovitch/larry.html



Non-Fractal

Fractal

Larry S. Liebovitch



Examples of fractals

Fractals can be
generated by
recursive formula in
a complex plane.

For instance, the
following formula will
generate the left
fractal:

Z  =Z°+C



History of fractals

Benoit B. Mandelbrot
(1960). Fractal
geometry of nature

Mandelbrot termed
fractals for geometric
objects with self
similarity.




Properties of Fractals

Infinite detail at every point of the object

Self (affine) similarity between parts and
overall features of the object.

Zoom into traditional shape: less detalil

Zoom into fractals: more detail



Size of Features Non - Fractal ."

1 characteristic .
scale

Fractal

many different
scales

Larry S. Liebovitch




Deterministic nature of fractals

 Fractals are based on
recursive mathematical
formula: it can be predicted.

* Fractals are made to predict a
complex and chaotic system
deterministically.

Pythagor tree



Cardiovasular system

lar to Pythagor tree

Imi

S



Arterial tree Jun Zhang




FD and evolution

Tree branching is related to evolution. There is a direct
relationship between branching patterns and common
ancestry (Bickel, 2000)

“Domestic Birch Wild Birch Maple

Connection to tree graphs and graphs in general



FD Analysis Results

Type Domestic Wild
Birch 1.262 1.113
Cherry 1.647 1.459
Oak 1.648 1.279
Maple 1.378 1.358
Dogwood 1.656 1.456
Poplar 1.424 1.456




Euclidean Dimension (ED)

number of independent parameters that describes an object

* Dimension of an object measures the
complexity of the object. 3D object is more
complex than 1D object in general.

* Euclidean dimension: nonnegative integers
0,1,2,3,...

* Fractal dimension: 1.56, 2.49, 3.45,...



Fractal Dimension (FD)

« amount of variations in the object

Small FD = less jagged/complex
Large FD = more jagged/complex



Constructing Fractals

* Deterministic fractals are constructed by
an iterative process with the initial
configuration

Sierpinkskij lattice is
constructed from a
large triangle by
recursively cutting
smaller lattice.

FD=In3/In2=1.58496...




Example of self-similarity

Dilate by a factor of k=2
N=4 copies of the self

similar original square.

Dilate by a factor of k=3
N=9 copies of the self

similar original square.

K=scale factor

N=number of copies.

FD=In N/In K




Measure of self-similarity

*For the square, we have
k=N

*Alternately,

log, N =2

N

Dimension of object



1D line embedded in 2D

Line segment

Original
Dilated

k = scale factor = 2

N = number of copies = 2

InN i
AN

Ink Dimension of object

log N =



3D example

Cube

Original @ Dilated

k = scale factor = 2

N = number of copies of original = 8

logg N=3 —

Dimension of object



Fractal Dimension

- log, N measures the dimension of the
object.

 This is the definition of the dimension of a
self-similar object.

 We call this dimension as the fractal
dimension.



Sierpinskij Triangle Sierpinskij Sponge

FD=In4/In2=2



Koch curve Hilbert curve

FD =In 4/In 3 = 1.261859.... ED=In4/n2 =2



Hilbert curve

(-1/4,1/4) @ i

(1/4,0) ® ©
(0,0)

Matlab demonstration
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FD computation for Sierpinskij carpet

3mm

1mm Total area ?
— Total boundary?

log,8=1.89



Estimating FD

*FD can be explicitly computed on fractals
that are mathematical given.

*In practice, the object of interest may not
be a fractal but we can still estimate FD.

*Box-counting dimension (mandelbrot). The
most widely used method

*Perimeter-area dimension (Hausdorff)



FD computation by box counting

50 100 150 200 250 300 350 400 450 500 30 100 150 200 250 300 350 400 450 500

Gray scale image Binary image: pixels Boundary of the object
above a certain is obtained
threshold are set to one



Box counting process
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Break the image into
boxes of a given size
and count how many
of those boxes contain
the contour.

We perform this
process for several
different box sizes.

If a box contains the
contour, it is colored
white.



Box size

FD estimation

number of boxes

(in pixels) containing the contour
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FD=slope =1.5439

log(# of hlocks containing contour)
o

Log(#)

----- best fit line, slope =1.5439 | 4

-3 =7 =1

log(1 / hlock size)
Log(1/box size)




blood vessels air ways

in the retina in the lungs
Family, Masters, and Platt 1989 West and Goldberger 1987

Physica D38:98-103 Am. Sci. 75:354-365
Mainster 1990 Eye 4:235-241 . ,
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Probabilistic interpretation of FD

Blood Vessels in the Retina

size 40 mm 20 mm 10 mm

humber 1 2 4 8



PDF - Probability Density Function
HOW OFTEN there is THIS SIZE

10 10

Number | Log(number) |

0 10 20 30 40 50 1 10 100
Log(size)

size of blood vessel in mm

Straight line on log-log plot
= Power Law



Probabillistic self-similarity

The statistics of the big pieces is the same
as the statistics of the small pieces.

100,000 1000
Number small Number BIG
10000 blood - blood
’ vessels vessels

1,000 10

100
1 10 100 1000 1 10 100 1000

size in pm size in mm



Not Fractal

Fractal

PDF(x)

Log PDF(x)

Log (x)




Non - Fractal

Sample

' Mean ” | ,l/tpop

More Data ==




Non-Fractal

Log avg
density within

radius r
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For fractals, the Average depends
on the amount of data analyzed.

Log (sample means) Log (sample means)

or

Log (amount of data) Log (amount of data)



Ordinary Coin Toss

Toss a coin. If it is a tail win
$0, If it is a head win $1.

The average winning is $0.5

U — 1/2

Non-Fractal



PDF(x)
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St. Petersburg Game (Niklaus Bernoulli)

Toss a coin. If it is a head win $2, if not,

keep tossing it until we obtain a head. H $2
If this occurs on the N-th toss we win .-IE.II_JH 4
gON. $8
TTTH $16

With probability 2-N we win $2N.

The average winnings are:
27121 + 2202 + 27323 + | =

1+ 1 + 1 + .. . =e9

u
!

&

Fractal




St. Petersburg Game (Niklaus Bernoulli)
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Electrical Activity of Auditory Nerve Cells

Teich, Jonson, Kumar, and Turcott 1990
Hearing Res. 46:41-52

voltage action potentials

T‘IIIJ[IJIII [ 1,

time




Divide the record into time windows:

Count the number of action potentials in
each window:

T A

2 6 3 1 5 1
Firing Rate = 2, 6, 3, 1, 5,1

Repeat for different lengths of time

windows:
8 4 6

Firing Rate = 8, 4, 6



Dimension of point cloud data

*FD can be taken as the approximation to the intrinsic
dimension (D,) of data, which can be different from the
embedding dimension (D,).

count (x,x': Ix — x| < k) = k"

Incount (x,x': lx — x| < k)

D. =
’ Ink



line in a plane: uniform dist. in a plane:

D,=2 D,=2

Read camastra.2002.PAMI....



Unfortunately, the box-counting dimension can be computed only
for low-dimensional sets because the algorithmic complexity grows
exponentially with the set dimension. Therefore, in our opinion, a
good substitute for the box-counting dimension can be the
correlation dimension [11]. Due to its computational simplicity, the
correlation dimension is successfully used to estimate the dimen-
sion of attractors of dynamical systems. The correlation dimension is
defined as follows: let 2 = x;, x5, ..., xN be a set of points in IR" of
cardinality N. If the correlation integral C,,(r) is defined as:

Cn(r) = Jim N(N_I)Z S H-xl<n, @

1=1 j=i+1
where [ is an indicator function,” then the correlation dimension D of
(1 is:

. In(Cp(r))
2= Gy (3)

Read camastra.2002.PAMI....



FD and PCA

Data Points 1st principal

component

FD and the number of significant principal component ?



FD and Factor Analysis
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Factors

Data Points

FD and the number of significant factors ?



Are brain networks self-similar?



Small-world network

*Six degrees of separation in social networks.

*One can reach a given node from another one with a
small number of steps.

Regular Small world

p=0

Increasing randomness

Source: Watts (1999)



Small-world. The distance between two nodes in a network is the num-
ber of edges in a shortest path connecting them. If most nodes can be
connected in a very small number of steps, the network is said to be small-
world. Let 1 be the shortest distance between two nodes and n is the number

of nodes in a graph. Then small-worldness is mathematically expressed as

(Song et al., 2005):
El ~ Inn. (9.32)

El is sometime called the diameter of the network. However, in general, the
diameter of a network usually means the maximum 1 (longest geodesic path)
(Newman, 2003). The relation (9.32) links the over all size of the graph
to the number of nodes. (9.32) implies that the small-world networks are
not self-similar, since self-similarity requires a power-law relation between
|l and n. However, via a scale-invariant renormalization procedure, one can
show diverse complex networks are in fact self-similar (Song et al., 2005).



Small-worldness E(l) oC lnn
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Scale-free network

The degree distribution P(k), probability distribution of the number of
connecting edges in each node, can be represented by a power-law with a
degree exponent y usually in the range 2 < v < 3 for diverse networks
(Bullmore and Sporns, 2009; Song et al., 2005):

P(k)~ k™.

Such networks exhibits gradual decay of tail regions (heavy tail) and are
said to be scale-free. In a scale-free network, a few hub nodes hold together




Scale invariant renormalization process: so0ng.2005.pdf
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14 control subjects

14 random graphs
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