## Computational Methods in NeuroImage Analysis

Instructor: Moo K. Chung mkchung@wisc.edu

Lecture 12 Complexity in network and brain images

November 26, 2010

### **Class schedule:**

# Take home exam on December 2. Due to popular demand, exam schedule has been changed.

There is no class on December 3. Exam will be emailed to you by December 3 9:00am or earlier. Your solution should be emailed to me in PDF with accompanying MATLAB code (zip it) by December 6 9:00am. It will take minimum 30 hours to finish.

#### Oral exam on December 10.

Send me your talk title by next December 2.

#### Final report due December 17.

Send PDF by 9:00pm. There will be penalty for late reports. Do not submit twice. First submission will be graded.

# Image Complexity

- Motivation: why we are interested in studying image complexity?
- Image complexity can characterize an image and the underlying clinical status (existence of cancer, Alzheimer's disease).
- The most widely used image complexity measure is the *fractal dimension (FD)*.
- We will study *fractals* and *fractal dimension*.

# **Use of Fractals**

•Quantification of biological systems (most complex and chaotic in science).

•Fractal image compression: it can achieve the compression ratio of up to 600:1.

•Fractal rendering: realistic computer rendering of clouds, rocks, shadows

### **References:**



Fractals and Chaos and Simplified for the Life Sciences

Larry S. Liebovitch Oxford Univ. Press, 1998

www.ccs.fau.edu/~liebovitch/larry.html

## **Non-Fractal**



Larry S. Liebovitch

### **Examples of fractals**



Fractals can be generated by recursive formula in a complex plane.

For instance, the following formula will generate the left fractal:

$$Z_{n+1} = Z_n^2 + C$$

# **History of fractals**



•Benoit B. Mandelbrot (1960). *Fractal* geometry of nature

•Mandelbrot termed *fractals* for geometric objects with self similarity.

# **Properties of Fractals**

- Infinite detail at every point of the object
- Self (affine) similarity between parts and overall features of the object.
- Zoom into traditional shape: less detail
- Zoom into fractals: more detail

### **Size of Features**



many different scales

ent

Larry S. Liebovitch

### **Deterministic nature of fractals**



- Fractals are based on recursive mathematical formula: it can be predicted.
- Fractals are made to predict a complex and chaotic system deterministically.

## **Cardiovasular system**





Similar to Pythagor tree



## **FD** and evolution

Tree branching is related to evolution. There is a direct relationship between branching patterns and common ancestry (Bickel, 2000)



Connection to tree graphs and graphs in general

# **FD Analysis Results**

| Туре    | Domestic | Wild  |
|---------|----------|-------|
| Birch   | 1.262    | 1.113 |
| Cherry  | 1.647    | 1.459 |
| Oak     | 1.648    | 1.279 |
| Maple   | 1.378    | 1.358 |
| Dogwood | 1.656    | 1.456 |
| Poplar  | 1.424    | 1.456 |

# **Euclidean Dimension (ED)**

number of independent parameters that describes an object

- Dimension of an object measures the complexity of the object. 3D object is more complex than 1D object in general.
- Euclidean dimension: nonnegative integers 0,1,2,3,...
- Fractal dimension: 1.56, 2.49, 3.45,...

# **Fractal Dimension (FD)**

amount of variations in the object

Small FD = less jagged/complex Large FD = more jagged/complex

# **Constructing Fractals**

 Deterministic fractals are constructed by an iterative process with the initial configuration

#### Sierpinkskij lattice is

constructed from a large triangle by recursively cutting smaller lattice.

FD=In3/In2=1.58496...



# **Example of self-similarity**





Dilate by a factor of k=2 N=4 copies of the self similar original square.

Dilate by a factor of k=3 N=9 copies of the self similar original square.

K=scale factor N=number of copies.

FD=In N/In K

## **Measure of self-similarity**

•For the square, we have

$$k^2 = N$$

•Alternately,

$$\log_k N = 2$$

Dimension of object

## 1D line embedded in 2D

Line segment

Original ——

Dilated \_\_\_\_\_

k = scale factor = 2

N = number of copies = 2

$$\log_{k} N = \frac{\ln N}{\ln k} = 1$$
 Dimension of object

## 3D example



k = scale factor = 2

N = number of copies of original = 8

$$\log_k N = 3$$
 — Dimension of object

## Fractal Dimension

- $\log_k N$  measures the dimension of the object.
- This is the definition of the *dimension of a self-similar object.*
- We call this dimension as the **fractal dimension**.

### Sierpinskij Triangle

### Sierpinskij Sponge



FD = ln 4/ln 2 = 2

### Koch curve

### **Hilbert curve**



 $FD = \ln 4/\ln 2 = 2$ 



#### Matlab demonstration

### **FD** computation for Sierpinskij carpet

#### 3mm





Total area ? Total boundary?

1mm



# **Estimating FD**

•FD can be explicitly computed on fractals that are mathematical given.

•In practice, the object of interest may not be a fractal but we can still estimate FD.

•Box-counting dimension (mandelbrot). The most widely used method

•Perimeter-area dimension (Hausdorff)

### FD computation by box counting



Gray scale image

Binary image: pixels above a certain threshold are set to one

Boundary of the object is obtained

### **Box counting process**



Box size 3 x 3



```
Box size 22 x 22
```





Box size 75 x 75

Break the image into boxes of a given size and count how many of those boxes contain the contour.

We perform this process for several different box sizes.

If a box contains the contour, it is colored white.

## **FD** estimation



FD=slope =1.5439

### blood vessels in the retina

Family, Masters, and Platt 1989 Physica D38:98-103 Mainster 1990 Eye 4:235-241



### air ways in the lungs West and Goldberger 1987 Am. Sci. 75:354-365



Probabilistic interpretation of FD Blood Vessels in the Retina



## PDF - Probability Density Function HOW OFTEN there is THIS SIZE



Straight line on log-log plot = Power Law

### Probabilistic self-similarity

The statistics of the big pieces is the same as the statistics of the small pieces.







## **Non - Fractal**





### For fractals, the Average depends on the amount of data analyzed.



### **Ordinary Coin Toss**

Toss a coin. If it is a tail win \$0, If it is a head win \$1.

The average winning is \$0.5

 $\mu \rightarrow 1/2$ 

**Non-Fractal** 

## **Ordinary Coin Toss**



### St. Petersburg Game (Niklaus Bernoulli)

Toss a coin. If it is a head win \$2, if not, keep tossing it until we obtain a head.

If this occurs on the N-th toss we win  $$2^{N}$ .



With probability  $2^{-N}$  we win  $2^{N}$ .



μ ↓ • • • • •

### St. Petersburg Game (Niklaus Bernoulli)



### **Electrical Activity of Auditory Nerve Cells**

Teich, Jonson, Kumar, and Turcott 1990 Hearing Res. 46:41-52





# **Dimension of point cloud data**

•FD can be taken as the approximation to the intrinsic dimension  $(D_i)$  of data, which can be different from the embedding dimension  $(D_e)$ .

$$count (x, x': ||x - x'|| < k) = k^{D_i}$$
$$D_i = \frac{\ln count (x, x': ||x - x'|| < k)}{\ln k}$$





- line in a plane:
  - D<sub>e</sub>=2
  - D<sub>i</sub>=1
  - FD ≈ 1

- uniform dist. in a plane:
  - D<sub>e</sub>=2
  - D<sub>i</sub>=2
  - FD ≈ 2

#### Read camastra.2002.PAMI....

Unfortunately, the box-counting dimension can be computed only for low-dimensional sets because the algorithmic complexity grows exponentially with the set dimension. Therefore, in our opinion, a good substitute for the box-counting dimension can be the *correlation dimension* [11]. Due to its computational simplicity, the correlation dimension is successfully used to estimate the dimension of attractors of dynamical systems. The correlation dimension is defined as follows: let  $\Omega = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$  be a set of points in  $\mathbb{R}^n$  of cardinality *N*. If the *correlation integral*  $C_m(r)$  is defined as:

$$C_m(r) = \lim_{N \to \infty} \frac{2}{N(N-1)} \sum_{i=1}^N \sum_{j=i+1}^N I(\|\mathbf{x_j} - \mathbf{x_i}\| \le r),$$
(2)

where *I* is an *indicator function*,<sup>1</sup> then the *correlation dimension D* of  $\Omega$  is:

$$D = \lim_{r \to 0} \frac{\ln(C_m(r))}{\ln(r)}.$$
(3)

Read camastra.2002.PAMI....

### **FD** and **PCA**



FD and the number of significant principal component?

## FD and Factor Analysis



FD and the number of significant factors ?

## Are brain networks self-similar?

## Small-world network

•Six degrees of separation in social networks.

•One can reach a given node from another one with a small number of steps.



Source: Watts (1999)

Small-world. The distance between two nodes in a network is the number of edges in a shortest path connecting them. If most nodes can be connected in a very small number of steps, the network is said to be *smallworld*. Let l be the shortest distance between two nodes and n is the number of nodes in a graph. Then small-worldness is mathematically expressed as (Song *et al.*, 2005):

$$\mathbb{E}l \sim \ln n.$$
 (9.32)

El is sometime called the diameter of the network. However, in general, the *diameter* of a network usually means the maximum l (longest geodesic path) (Newman, 2003). The relation (9.32) links the over all size of the graph to the number of nodes. (9.32) implies that the small-world networks are not self-similar, since self-similarity requires a power-law relation between l and n. However, via a scale-invariant renormalization procedure, one can show diverse complex networks are in fact self-similar (Song *et al.*, 2005).



### **Degree distributions**





### Scale-free network

The degree distribution P(k), probability distribution of the number of connecting edges in each node, can be represented by a power-law with a degree exponent  $\gamma$  usually in the range  $2 < \gamma < 3$  for diverse networks (Bullmore and Sporns, 2009; Song *et al.*, 2005):

 $P(k) \sim k^{-\gamma}$ .

Such networks exhibits gradual decay of tail regions (heavy tail) and are said to be *scale-free*. In a scale-free network, a few hub nodes hold together

Scale invariant renormalization process: song.2005.pdf



