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Abstract: Networks have become a key approach to understanding systems of interacting objects,
unifying the study of diverse phenomena including biological organisms and human society. One
crucial step when studying the structure and dynamics of networks is to identify communities:
groups of related nodes that correspond to functional subunits such as protein complexes or social
spheres. Communities in networks often overlap such that nodes simultaneously belong to several
groups. Meanwhile, many networks are known to possess hierarchical organization, where
communities are recursively grouped into a hierarchical structure. However, the fact that many real
networks have communities with pervasive overlap, where each and every node belongs to more
than one group, has the consequence that a global hierarchy of nodes cannot capture the
relationships between overlapping groups. Here we reinvent communities as groups of links rather
than nodes and show that this unorthodox approach successfully reconciles the antagonistic
organizing principles of overlapping communities and hierarchy. In contrast to the existing literature,
which has entirely focused on grouping nodes, link communities naturally incorporate overlap while
revealing hierarchical organization.We find relevant link communities in many networks, including
major biological networks such as protein-protein interaction and metabolic networks, and show
that a large social network contains hierarchically organized community structures spanning inner-
city to regional scales while maintaining pervasive overlap. Our results imply that link communities
are fundamental building blocks that reveal overlap and hierarchical organization in networks to be
two aspects of the same phenomenon.



Final Exam will be emailed to you at exactly
5:00am on December 3. You have 7 hours to email
back your solutions. | will only accept PDF The
solution has to be emailed to me by Noon. | won'’t
accept multiple submissions. The first submission
will be graded so submit carefully. After Noon, 10%
deduction/hour will apply. The final exam is
30-40% of your final grade. Depending on the
performance | will fix the percentage.

If you followed my lectures carefully, it should be
done by 3 hours. There are 6 problems. Three
problems will involve MATLAB programming.



Compressed sensing, also known as compressive
sampling and sparse sampling, is a technique for
finding sparse solutions to underdetermined
systems (wiki definition).
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Underdetermined system

b= Ax

N measurements P parameters

There are more parameters than measurements.
There are infinite number of solutions.

However, if x is sparse, we can exactly recover x.



Ll norm minimization
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Basis pursuit

min ||z
Ax=b

If x is sufficiently sparse, the basis pursuit will find it.
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Read chung.201 |.ISBI.pdf

In science and medical imaging in particular, it 1s usually assumed
that the 4-th functional measurement f;(z) at position z € M C R®
to follow

fi(z) = p(z) + (), ¢y

where p 1s the unknown mean signal to be estimated, €; are noise
and M is the underlying manifold where the data is observed [1,
2, 3,4, 5, 6]. The unknown signal is usually estimated by various
spatial smoothing techniques over the manifold M. M can be the
brain cortical surface (Figure 1) or 3D brain network graphs (Figure
4).



Signal detection via random field theory
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In order to compute the type-I error associated with Hy, we need
know the distribution of the supremum of the field 7'(z), which is
not straightforward. Hence a great deal of the imaging and statis-
tical literature have been devoted to determining the distribution of
sup,ca L'(z) [7, 8, 9, 6, 10]. Define the excursion set as

Ah={$€M2T($)>h}.

It 1s known that

P( sup T'(x) > h) ~ Ex(Anr), (3)
zeM

the expectation of the Euler characteristic of the excursion set Aj
[11, 12, 13]. The relationship (3) reformulates the usual statistical
inference as a topological problem. Figure 2 shows the the how the
excursion set changes over increasing threshold A.



The above framework is one way of detecting signal and not nec-
essarily the best way to characterize complex multivariate functional
data such as brain MRI. Instead of looking at the topological change
of the excursion set of the statistic 7", which is a function of f;, we
look at the topological change of measurements f; first. Let

Bin={x e M: fi(x) > h}

be the excursion set associated with the z-th measurement. Then
we determine the topological structure of B; ; first, and perform a
statistical inference later (Figure 2). The main tool for investigating
the topological change of the excursion set is persistent homology



Heat kernel smoothing Delaunay triangulation
of cortical thickness on critical values

Persistent homology



Network modeling. Let p be the number of nodes in the network.
In most applications, the number of nodes are expected to be larger
than the number of observations n, which gives an underdetermined
system. The i-th measurement f; are then discretely sampled at p
nodes, which we will simply index by integers. To simplify the no-
tation, we denote z;; = f;(j). At node j, we have random variable
xj, which is realized by z1;, - , zn;. We will denote this realiza-
tion as x; = (214, -+ ,Zn;) . The measurement z; are assumed to
be distributed with mean zero and covariance ¥ = (0;;). i.e.

Emi - 0, ]E(:z:z:vj) = 0.

If Ex; # 0, we can always center the data by translation. The corre-
lation -y;; between the two nodes 2 and 7 is given by

0'7;_7'

Vg =



If we denote the inverse covariance matrix as ¥~ = (¢o*’), the
partial correlation between the nodes 7 and 7 while factoring out the
effect of all other nodes is given by

ot
T Vatigin
Equivalently, we can compute the partial correlation via a linear

model as follows. Consider a linear model of correlating measure-
ment at node 2 to all other nodes:

T; = Zﬁijil?j + €;. ®)
J#u

(4)

The parameters [3;; are estimated my minimizing the sum of squared
residual of (5)

LB) =) _lIxi— ) Bisxll” (6)
1=1

JFu



in a least squares fashion. If we denote the least squares estimation
as 3;;, the residuals are given by

vo=iEs — ) Bisty: (7)
J#1

The partial correlation is then obtained by computing the correlation
between the residuals of the model fit (5) [22, 27, 26]:

pij = E[(ri — Eri)(r; — Er;)].

See MATLAB
demonstration



The minimization of (6) is exactly given by solving the normal
equation:

X5 = i B3, 8)
J#1

which can be made into a standard linear form y = A(3 via an alge-
braic manipulation [28]. Note that (8) can be written as

[ B

Bi2
Xi = [Xla >xz—1a03 Xi+1, 7xp] . ’
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where 0,,«1 1S a column vector of all zero entries. Then we have

x X, 0 - 0 3
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npXp

where A is a block diagonal matrix and 0, xp is a matrix of all zero
entries.

When n=30, p=169, A matrix is of size 5577 x 28561.
When p > 1000, it becomes a challenging computational problem.



J=)_ 1Bl
9

The sparse estimation of 3;; is then given by minimizing L + AJ.
Since there is dependency between y and A, (9) is not exactly a
standard compressed sensing problem but it is reasonable to treat it
as one by simply ignoring the dependency [26, 28]. It should be
intuitively understood that the sparsity makes the linear equation (8)
less underdetermined. The larger the value of A, more sparse the
underlying topological structure gets. Since

/0-?:?',
p’l,] _167'.7 0_337

the sparsity of [3;; directly corresponds to sparsity of p;;, which is
the strength of the link between nodes 2 and 7 [26, 28]. Once the
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Sparse brain network obtained with different lambda

Matlab demonstration



Equivalent formulation

Then we estimate either 3i; by solving

minL(B) +AJ(B) (10.3)

for some tuning parameter A < 0. The larger the value of A, more sparsity
constraint we are enforcing. (10.3) can be equivalently formulated as

IrgnL(B) subject to J(B) < e



Connection to likelihood approach

Others have proposed the likelihood methods. The Gaussian log-
likelihood of data X with the covariance matrix X is given by

L(Z7") =logdetZ~' — tr(SZ~") —p||Z7 ',

where S is the sample covariance, || - ||7 is the sum of the absolute value
of the matrix entries and p > 0 controls the sparsity of solution (Banerjee

et al., 2006, 2008; Friedman et al., 2008). This needs to be maximized over
all positive-definite matrices numerically:

—

¥ -1 =prp max logdetZ~! — tr(SZ~ ) —p|IZ77|I4 (10.4)
>

The relationship of (10.4) to LASSO framework is explored in (Friedman
et al., 2008).



DISCUSSION

Computational bottleneck for large p.
What do we do with p = 10000?

nodes. One practical solution is to modify (5) so that the measure-
ment at node ¢ is represented more sparely over some possible index
set S;:

Ti = E Bijx; + €i.
Si

making the problem substantially smaller.



Lecture |2 Topics — last lecture

More on network complexity, complexity in general,
fractional dimension (FD).

ahn.2010.nature.linknetwork.pdf
rubinov.20 1 0.Nl.network.pdf
esteban.2007.Nl.fractal.pdf



