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Motivation/Data

Based on 8 elderly controls (EC) and 7
mild cognition impairment (MCI) subjects,
we perform the logistic discriminant
analysis (LDA) on cortical thickness and
cortical surface area to see if these two
measures can be used to discriminate
MCI from EC.

Data is obtained from Sterling Johnson



Previous work on AD and cortical thickness

» Cortical thickness has been shown to
characterize cortical atrophy in AD patients
quite well (Lerch et al., Neurolmage, 2005).

* Hypothesis on AD progression:
NC -=> MCI - AD

 Question: It is unclear if cortical thickness will
be an important biomarkers of discriminating
EC vs. MCI.



group sex age education memory thickness area

02 63 16 47 2.7718 15.4768
02 66 16 48 2.7132 13.953
01 70 18 43 2.8094 13.5577
EC 01 75 20 48 2.7371 13.821
02 75 16 59 2.6476 14.0353
02 64 13 42 2.8913 14.354
01 69 20 56 2.8284 13.3125
01 81 16 41 2.6412 14.463
1 2 75 12 29 2.7204 13.628
1 1 62 20 39 2.6992 13.6875
MCI 1 1 68 17 34  2.7632 13.823
1 2 77 14 26  2.6106 13.1918
1 1 80 18 28  2.4556 12.8165
1 1 78 20 37 2.6012 13.164
1 2 64 18 31  2.8094 13.1511



Data: Group, Thickness, Area

3

29} s o

ssauyoIy |
? (@]
0

o/

g

&

7/
/

23} S

A A A | L
125 13 135 14 145 15 155

Area

Area is a discriminating variable.
EC has more area (folding).






Suppose we have p regressors X;,--- ,X;,. These can be both imaging
and nonimaging biomarkers such as local area, cortical thickness, gender,
age and behavioral measures at a voxel. Let x{1,--- ,%i; denote the mea-
surements for the i-th subject. Let the response variable Y; be the clinical
state of the i-th subject modeled as a Bernoulli random variable with pa-
rameter ;. Y; = 1 if the i-th subject is autistic with probability 7t; while
Yi = 0 if the subject is normal with probability 1 — 7;. 7t; is the likelihood

(probability) of a subject belong to the group 1, i.e. my = P(Y; = 1). For
instance, Y; can indicate the subject belongs to the elderly normal control
or mild cognition impairment group respectively in an Alzheimer’s disease
study.

Now consider a general linear model

Yi = x{B + €, (7.31)

where x{ = (1,%{1,--- ,Xi{p) and B’ = (Bo,- - - Bp). We may assume Ee; =0
and Ve; = 0. In this case, (7.31) is no longer appropriate since

EY; =T = x{ B
but x{f may not be in the range [0,1]. This inconsistency is caused by



trying to match the continuous variables x;;,--- ,%i, to the categorical
variable Y; directly. To address this problem, we introduce the logistic
regression function g:
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Then using the logit function, we can write this as
ELe

— x!
= X Bi.

logit(7;) = log

The unknown parameters B are estimated via the maximum likelihood
estimation (MLE). The likelihood function is
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The loglikelihood function is given by

n

log L(B) = const. + » y¢logm + (1 —yy) log(1 — )
im]
n

= const. + Y yix{P + log(1 — m;)

i=1

and its maximum is obtained when

dlogL -
gﬁ(ﬁ) =Y xi(yi—m)=0.
i=1
In simplifying the expression, we used the following identities
o
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Since the logistic regression function 7t is in a complicated form, the
maximum is obtained numerically. Define the information matriz to be
_ d%logL(B) ,
Then the Newton-Raphson algorithm is used to find the MLE in an iterative
fashion. Starting with an arbitrary initial vector B°, we estimate iteratively
as

)-l 0 108 L(B)
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Performance of a classifier

* Error rate = over all probability of making
wrong classification

« Simplest way to estimate the error rate is to
use the concept of cross-validation.

« Leave one out cross-validation



Most statistical data analysis packages such as R and MATLAB has a built-in
routine for estimating the parameters of the logistic regression.

The discriminant analysis resulting from the estimated logistic model is
called the logistic discrimination. We classify the i-th subject according to
a classification rule. The simplest rule is to assign the i-th subject as group
1 if we have

P(Y{ — ‘) > P(Yi = 0)

This statement is equivalent to 7y > 1/2. Depending on the bias and
the error of the estimation, the value 1/2 can be adjusted. For the fitted
logistic model, we classify the i-th subject as group 1 if x{f; > 0 and as 0 if
x{Bi < 0. The plane x{B = 0 is the classification boundary that separates
the two groups. The performance of classification technique is measured by
the error rate vy, the overall probability of misclassification.




The cross-validation is mainly used to estimate the error rate. This is
done by randomly partitioning the data into the training and testing sets.
In the leave-one-out scheme, the training set consists of n—1 subjects while
the testing set consists of one subject. Suppose the i-th subject is taken as
the test set. Then using the training set, we determine the logistic model.
Using the estimated model, we test if the i-th subject is correctly classified.
It is classified correctly, we let the classification error e.y =0 and e_; =1
otherwise. The leave-one-out error rate is given by

. 1
Y='—"§e_{.

The discriminant power is then given as 1 —¥.
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Significant variables
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Error rate:
thickness --> 47%

thickness + area --> 20%  area --> 20%



MATLAB demonstration



Cortical Asymmetry Analysis



Yakovlevian torque

Antercre

A twisting effect is also
observed, known as
Yakovlevian torque, in
which structures
surrounding the right
Sylvian fissure are
'torqued forward' relative
to their counterparts on
the left.

Toga & Thompson 2003. Nature
Reviews Neuroscience 4, 37-48



Sulcal pattern asymmetry on 149 subjects

L eft

central &

temporal M
sulci

Right
central &
temporal
sulci

Neurolmage (2003)



Asymmetric pattern of abnormal cortical thickness in autism




Asymmetry over multiscale

0.0001

Color scale= x-coordinate



Asymmetric graph network:
Degree of nodes for all subjects

ol
- LD

T Control

Autism

New research idea: network asymmetry analysis
You need to put the symmetry constraint in the graph modeling



Mandible left-right asymmetry




Hemispheres....

Are they symmetric !
If not, what part is not
symmetric !




Previous 3D approach

|. Image registration across subjects via a
template

2. Image registration across hemispheres by
registering the original MRI| and its mirror
reflection.

3. Construct asymmetry index at each voxel.

4. Feed the index into a statistical model.




Two population asymmetry analysis framework

\J
Clinical population Aoiacontion

imagx Ae

registration registration

template




Asymmetry Index

Localized
asymmetry
index

(L-R)/(L+R)

Motivation: quantify abnormal brain structural
asymmetry across hemispheres in a group of
autistic subjects




Three issues with this well
established 3D approach

|. 3D image registration can easily misalign sulcal
pattern.

2. Mirror reflection and doing image registration
is an additional computational burden.

3. The 3D approach does not work for 2D cortical
surface data. New 2D framework is needed.




Related works in heuroanatomy

Surface model, Surface Surface data Multiple

parameterization  registration smoothing comparison
correction

Spherical PDE diffusion
harmonic Paul Thompson  smoothing Random field
descriptors Michael Miller (Neurolmage 2003 theory

CVPR, 2003 :
Guido Gerig ) Keith Worsley

heat kernel Jonathan Taylor
smoothing

Li Shen (Neurolmage, 2005)

Martin Styner

Unified framework: Weighted Fourier Analysis (IEEE -TMI, 2007)




Three problems of spherical harmonic representation

* Gibbs phenomenon (ringing artifacts)

* Computational bottleneck of solving large linear
equations

* Slow convergence =2 Inefficient representation
(MICCAI 2008 workshop on mathematical foundations of computational anatomy)

Weighted Fourier Analysis




Cortical manifold and function
defined on the manifold

G ’ Anatomical manifold M € R“
Parameter space N € R™

Hilbert space L*(N) with inner product

(91, 92) / 91(p)g2(p

Self-adjoint operator £ Basis function
(£91,92) = (91,L92) Lp; = Aj;




Weighted Fourier Series

function defined on t = scale

surface + bandwidth
surface coordinates diffusion time

Self-adjoint PDE: 0tg+ Lg =0,9(p,t =0) = f(p)

Weighted Fourier Series  g(p,t) ZG “(f, 505 (p)
3=0

Isotropic Kernel Smoothing = jN Ki(p,q)f(q) du(g)




e For measurements f(pi). flpa). -« . flpn). (n = 46,000), we
set up normal equations:

k !
f(pt) - Z Z ‘fhn}'lm(l)i)-
I=0 m=-I1 \ i-th mesh vertex
e Matrix form:
/ flm) Yoolpr) Yioa(p) Ywlpr) - Yidpr) P00 \
flp2) N Yoolp2) Yica(p2) Yiolpe) --- Yie(po) By
\ f(_l’n) );Nl(’[)n] }’l~~](v])u) )"’[U{])n ’ o )}‘-k(])") "il;k }
F Y i

40962 x 7000
Estimation: 3 = (Y'Y)'Y'F.



Iterative residual fitting (IRF) algorithm
Scalable approach to solving a huge linear equation

Step |. measurements f(P1), -+, f(pn)

Step 2. Set initial degree=0 k=0

Project data

Step 3. Solve f(pi) Z Biem Yiem (p;) intoafinite

subspace
m=—k

f - f ]2-‘ Once low frequency parts are
estimated, we throw them away

Step 4. Set degree k<« k+1

MATLAB code available at
I[EEE-TMI 2007




Weighted Fourier Analysis

Shape Asymmetry




Surface registration via WFS

Given two I-th degree WFS surfaces vi1, vi2

find the displacement d; that minimizes the
discrepancy between two surfaces:

Vij2 — Vi1 =— arg min / [’Uz'l + dq;(’Uz'l) == ’07;2]2 du( )
M

d;EH;

H; :subspace spanned by up to I-th degree spherical harmonics

Vi1 + d; (’Uﬂ) : deformation of coordinates U;1

Consequence: For fixed (6,¢),

vi1(0,¢) corresponds to  vi2(0, ¢)




Subsampled surface displacement vector fields
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Nonlinear surface registration via curvature matching
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Decoding cortical surface asymmetry




Spherical harmonic of degree | and order m

" DO
P99HOO
D@D DYDY D

Spherical harmonics can be decomposed into
symmetric & asymmetric components




Cortical asymmetry analysis

Establishing hemispheric correspondence algebraically

Mirror reflection: It is done algebraically on WFS
S ————

Surface registration




Establishing hemispheric
correspondence

What is invariant under
mirror reflection ?

(6

=3 ) e (£, Vi) Yim (6, )

=0 m=0




Shape decomposition into
symmetric and asymmetric parts

k

S(8, ) = [9(9,90)+g (8,2 — ¢ ] > Z e (£, Vim) Yim (6, )

=0 m=-—I1

k l
56,:0) =30 2n~9)| = 3 3" e I, Yim) Yim (6, )

=0 m=0
Normalized asymmetry index

500,0) = 56,27 — ) _ X1 L1 € TS, Yim) Yim (6, )
9(0,0)+9(0,2r—p) S8 S e WD (f, ¥ ) Vi (0, )

N, p) =




Asymmetry Index on Cortical Thickness

Normalized

i i Asymmetry
Cortical Weighted Symmetry

thickness SPHARM index index

—)  asymmetry

index




Discriminant power approah




Statistical Parametric Map

multiple comparison correction via the random field theory
(Worsley et al. 1995) = not so trivial

2

P(sup Z(p) > h) = Z Oq(0Q)palh)
& O :
peot i > 40000 correlated hypotheses

T-stat resulting showing
group difference between
autism and control




T random field on manifolds

P( max 7'(x) > y) ~ 2p0(y) + ||0Qatias || p2(y)

Xeaﬂatlas

Euler characteristic density

L 1'(5)
/)(,.(jf/] - / s W =T
Jy UN— 1))/ 5

o 1 L In P(2) ('] Y-
o1 ) ' { ‘
P29 = FWHM? (27 '~’r”.—n‘ ’1(—>/- n— 1.

)

Worsley (1995, Neurolmage)

FWHM of smoothing kernel or residual field




WEFS is related to heat kernel smoothing

WES g(p,t) =

Heat kernel smoothing

10U 1 L 1 1 Bandwidth

Shape of heat kernel Numerical computation




Hypothesis & P-value free approach
Discriminant Power Map

Logistic
model

Probability of autism Asymmetry index

Classification Classification
i 2>
rule: 2 error rate




Discriminant Power Map
=1- error rate

Avoid the traditional hypothesis driven approach
No need to compute P-value > No need for random field theory




Lecture | | Topics

Numerical optimization
Compressed sensing
Covariance matrix estimation

figueiredo2007.compressed.sensing.pdf
lee.201 |. TMl.pdf
peng.2009.jasa....



