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KAIST/SNU Joint Workshop on
Sparse Data Recovery and its
Application to Medical Imaging

Sponsored by the Depastment of Brain and Cognitive Sciences (WCU), SNU
November 9, 2010. SNU Dental Hospital, Rm.807

9:30am-6:00pm

Sparse data recovery, compressed sensing, sparse
regression, sparse-PCA, persistent homology, sparse
network modeling, medical imaging applications.
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What is wrong with
functional connectivity studies!?

Where is the physical evidence of connection!?
Lack of underlying biological mechanism

What do we really need!?
-- Anatomical basis of connections




COMMENTARY

Backwardness of human neuroanatomy

Francis Crick and Edward Jones

————— -

e

To interpret the activity of living human brains, their neuroanatomy must be known in detall. New techniques to
do this are urgently needed, since most of the methods now used on monkeys cannot be used on humans.

OVER the past 20 years there have been
great odvances in understanding  the
neuroanatomy of the macupue monkey,
especially s cerebral cortes, We have
lcarned mauch about the functional par-
cellation of the monkey's cortex from
both anatomecal and physiologscal stud-
ies. We know, for example. that rather

Most of the MR scans used, although of
high resolution, are statie; they show
structure but not activity, Such a scan
can picture, for example, exactly how
the cerebral cortex w folded in a particu-
Lar individual bat not what part & func-
tonadly active. The spatial resolution of
classical MRI s now | mm or less so that

that for the macaque shown i Fig. 17
And what does the human equivalent of
the connectional map of Fig. 2 look like?
The shameful answer is that we do not
have such detaded maps because. for
obvious  reasons, most of  the  ex-
penmental methods used on the maca-
que brain cannot be used on humans.

Crick, F and Jones, E. 1993. Nature 362:109-110



Connectional map of visual area
I T

What we can say about the
neuroanatomy of the human brain?



Outdated
technique

New
technique

Another new method that at last per-
mits the tracing of connections in fixed
postmortem material is the use of lipid
stains such as the carbocyanine dve dil’"
or one of its relatives. This spreads along
axons by a diffusion process so that, in
general, 1t 1s a slow method: to go 10
times as far takes 100 times as long. It
could take many months to spread
through the full extent of a long path-
way, so there are time limitations on
using it to establish the longer connec-
tions. Nevertheless, the method i1s now

Diffusion Tensor Imaging (DTI)



Nucheus -
. The movement of
- anlsotroplc water diffusion

<rofilbment

7\ Microtubuse can be measured using DTI.

The direction of neuronal
filaments in the axon dictates the
movement of water diffusion.

Diffusion tensor




White Matter Fiber Tractography

Postmortem

Tractography is done using the second Reconstructed

order Runge-Kutta algorithm with TEND 0.5 million tracts
(Lazar et al., HBM 2003) '




ROI based connectivity analysis
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Chung et al. 2010

4?2 autistic & 32 control



Multiple ROI-based connectivity analysis

I do whole-Beain tractogiaphy

2 for Subpect » 1.2 5 do
3 for N = SMNAAL). 100, SO0, 1000, 2000, 3000, 400 do
4 for 100 rasdom paroellativos do
3 Generuie Nonode parcellation
6 2. Populate N x N connectavity matns
! 5. Theeshold and boarise
b L. Compute network metnics
4 e For
() end for
1 end for

Zalesky et al. 2010



What is wrong with traditional method?

|
< NV connecuvity
N - node parcellation Binanzc

Malrix

Need parcellation Arbitrary thresholding

New method: epsilon-neighbor approach




e-neighbor graph

All points in the g-neighbor
are identified as a single
node in a graph

the first data-driven DT structural network
construction framework without any parcellation




e-neighbor graphs with different €

original data

|0 mm



Adjacency matrix
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MATLAB
demonstration




Theoretical Neuroanatomy: Re'ating O. Sporns, G. Tononi and G.M. Edelman
Anatomical and Functional Connectivity in The Neurosciences Institute, 10640 John Jay Hopkins Drive,
Graphs and Cortical Connection Matrices S0 Diego, GAI212L,1m
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Generations

5 http:/[tononi.psychiatry.wisc.edu/
research_overview.html|
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Structural brain network

Anatomical
tract tracing

" -

Coupling matrix and neural dynamics

Simulated Simulated BOLD
electrophysiological time series
time series

Functional brain network

Honey, Kotter, 2007

Mutual information Cross-correlation



Various network complexity measures

There are soooo many complexity measures..... ®

modules hub nodes
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Rubinov and Sporns, Neuroimage, 2009



Complex brain networks: graph
theoretical analysis of structural and
functional systems

Ed Bullmore ** and Olaf Sporns*

Histological or
imaging data
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Graph theoretical analysis



Clustering |
Community 2

Connector hub

Community |




Application to autism

Autistic children (n=17)

Control subjects (n=14)

Matched for age, handedness, |IQ and head size

Abnormal connectivity hypothesis in autism:
local over-connectivity
long-range under-connectivity




autism #120



Autism

Control



red: autism

Degree distribution e control
Stratified

More low degree ¥ network

nodes -~
= more stratified
connections

Clustered
network
A
|
i
More high degree
nodes
71 = more connections in
I /’ hub nodes
|II|||.........._

pvalues = 0.024, 0.015 and 0.080 for degrees 1,2 and 3.



White matter connectivity based on correlating Jacobian determinant

NC=neglected children Controls



Largest connected component for 4 subjects
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In average 96% of all nodes are connected to each
other.We believe 100% of all nodes are supposed to
be connected. 4% is a processing noise caused by
weak connections.



Disconnected components

Control=blue
Autism=red

# of nodes in the largest
connected component
control: 644166

autism: 610 +66

pvalue = 0.01



Chung,Worsley et al., Neuroimage 2010 _

Left amygdala

group difference at lateral nuclei . .
_ | ' Correlatlng facial
' 0 q emotion discrimination
task response and
. amygdala shape

Right amygdala = weecum

2 (Emotion) x 2 (Orientation)
Neutral Emotional

Straight-ahead

Quarter-turned

Amygdala network correlated with behavioral measures



Having said that we need DTI
for structural connectivity analysis...

This is not entirely true. Ve don’t

really need DTI to do structural
connectivity.

How!




Keith ].Worsley’s evolving idea of anatomical
connectivity. Let’s see how he did it.

voxel=—>

05

-1.0

Functional connectivity
using cross-correlation

scan —>

Cross T |

correlations §

Worsley et al. 1998. HBM



Anatomical connectivity
in cortical thickness

Took 6 years to get from
functional to anatomical
connectivity.

(0 ' Worsely et al. 2004 Neurolmage



After Worsely et al. (2004) there has
been a flood of studies on anatomical
connectivity using cross-correlation.,

Lerch et al. 2006. Neurolmage

He et al. 2007. Cerebral cortex
Chen et al. 2008. Cerebral cortex
Gong et al., 2009. Cerebral cortex




Connectivity in tensor-based morphometry
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1 - 2
Pl=post-institutionalized 1 I 1 I -2
Controls

maltreated children
Connectivty Maps Z-statistic



No need for DTl doing structural connectivity analysis




Compare our maps to probabilistic
connectivity maps in DT

Transition probability of random walk is iteratively
computed from the seed voxel (spleninum).




Neurolmage

www clney et com locae ymmg
Newrolmage 31 (2006) 993 - 1003

Mapping anatomical correlations across cerebral cortex
(MACACC) using cortical thickness from MRI

Jason P. Lerch,* Keith Worsley,® W. Philip Shaw.® Deanna K. Greenstein.”
Rhoshel K. Lenroot,” Jay Giedd,” and Alan C. Evans™*



Correlation on residual

thick. = cl + c2*age. + e,

thick; = cl + c2*age, + e,

Are they same or different?




Partial correlation

Measure of dependency while removing the effect of
other variables.

\d \ @

Dependency between Y| and
Y2 is influenced by other
variables X1 and X2




Connectivity analysis

for multiple regions Pij
Region i D Region j

Correlation of regions i and j el YR
. . [ \ oo Y
while accounting for \ ’

> 2 \\\ |
the effect of other regions \ 7\ ~ 1

Region | Region 100

Inverse covariance matrix: Z_l — (0-7“3 )
gt

Vot

Partial correlations: p;; =



> ~P/\ It
Partial Correlation

PA 3
FDR-thresholding

e-neighbor Graph

Voxel-wise measure

\4

Connectivity maps with million nodes

\4

FDR-thresholding

\4

Epsilon-neighbor graph construction

Kim et al. ISBI, 2009 submitted
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Lee et al. 201 |. IEEE Transactions on Medical Imaging. submitted
Lee et al. 201 I. SPIE Medical Imaging.

How change in A is related to change in B while accounting for the
effect of other regions.

Region A Segion s

Region @ Region D)




FDG-PET

The PET scanner detects pairs of gamma rays
emitted from a positron-emtting radioactive tracer.

'8F-FDG is the most widely used tracer
used for measuring tissue metabolic activity,
in terms of regional glucose uptake.




Large-p small-n problem
p (100-1000) regions >> n (20-50) subjects

97 regions 37 subjects (26 autistic, | | control)
: : /
i-th subject: X, — (Cl?z‘l, v ,ZCf,;p)
assumption:

ix; =0, E(x;x}) =%

The dependency among p-regions is
characterized by the covariance matrix.

Inverse covariance matrix: Y, 1 _ ( o) )



Partial correlations as sparse regression

Sparse linear regression:
X; = E DijX; + €

JF1
Residual:

e = X¢ — E BijX;
J7t

Partial correlation:

,Of,;j — COI'r (T‘Z‘, 7"]')



LASSO( least absolute shrinkage and selection operator)

Goodness-of-fit; L = Z ||Xz Z /sz X H2

J 71

LASSO penalty: J = Z ‘ﬂzg‘

1<)

Minimize L )\J




Gaussian model assumption

QQ Plot Lilliefors statistics
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The sparse recovery of parameters can be done with overwhelmingly
large probability under Gaussian assumption and n = c log p
(Candes & Tao, 2006).



Sparsity vs. tuning parameter
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Cerebellum Gy o
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(a) ROIs in 3-dimensional space (b) 2-dimensional embedding of ROls

(d) PedCon
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Local over-connectivity

This is for functional network.VWhat about structural network?



Discussion Why do we have to pick
one particular threshold?

By ®
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Rips filtration and barcode
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bettiO

24 attention deficit hyperactivity
disorder (ADHD) children
26 autism spectrum disorder

(ASD) children
| | pediatric control subjects

Rate of decline difference:

Brain network in control subjects
merges to a single component
faster than other populations!

What about all other Betti numbers?



Lecture 10 topics

Asymmetry analysis
Logistic regression
Logistic discriminant analysis

Read chung.2008.mmbia.pdf
chung.2008.sinica.pdf



