Computational Methods in Neurolmage Analysis

Instructor: Moo K. Chung mkchung@wisc.edu

Lecture 8
Geometric computation

October 29, 2010

NOTICE

Final Exam: December 3 9:00-12:00am (35%)

Topics: Covers everything discussed in lectures (lecture notes + required reading)

Open book exam: you can bring laptops, calculators, books or even your puppy.

Previous exam in the directory /exam/

NOTICE

Oral presentation (15%)
December 10 9:00-12:00am.
Each student will present 20min.

Final report submission (40%) Deadline: December 17 9:00am. 10% penalty/day after 9:00am.

Sample final reports in the directory /projects

3D images to surface models

Computed Tomograpy (CT) scanner 3D image

Holes and handles in teeth regions need to be fixed for subsequent image processing and analysis.

Additional morphological closing operation was done to patch up the space that was occupied by teeth. Without this morphological operation, the final statistical result will be highly biased in teeth regions.

Limbic system associated with longterm memory and spatial navigation

Manual hippocampus segmentation on MRI template

Voxel by voxel comparison causes anatomical mismatching.

Deformable template framework

MRIs will be warped into a template and anatomical differences can be compared at a common reference frame.

Image registration Deformation from the template to a subject. sample size = 124 subjects

Left hippocampus surface template

Deformation field of warping the template to a subject

MATLAB demonstration

Basis functions on surface

How to compute basis in an arbitrary domain

Steady-state oscillations in wave equation

Helmholtz equation
$$\Delta_X F = \lambda F$$

Basis functions in the L-shaped membrane

Orthonormal basis

Finite Element Method

Finite Element Method (FEM)

$$\Delta f = \lambda f \longrightarrow C\psi = \lambda A\psi$$

Generalized eigenvalue problem

$$a_{ii} = rac{1}{12} \sum_{p_j \in N(p_i)} T_{ij}^+ + T_{ij}^-$$

$$c_{ii} = rac{1}{2} \sum_{p_j \in N(p_i)} (\cot \theta_{ij} + \cot \phi_{ij}) \leftarrow \lambda A \psi = C \psi$$

$$c_{ii} = \frac{1}{2} \sum_{p_j \in N(p_i)} (\cot \theta_{ij} + \cot \phi_{ij})$$

$$\Delta_X F = \lambda F$$

$$\lambda A\psi = C\psi$$

PhD thesis (2001), ISBI (2004) Qiu et al. (2005, IEEE TMI)

Finite Element Method (FEM)

Let N_T be the number of triangles in the mesh that approximates the underlying manifold M. We seek a piecewise differentiable solution f_i in the i-th triangle T_i such that the solution $f_i(x)$ is continuous across neighboring triangles. A slightly different formulation of FEM for the surface flattening problem is given in (Angenent et al., 1999). The solution f for the whole mesh is then

$$f(x) = \sum_{i=1}^{N_T} f_i(x).$$

Let $p_{i_1}, p_{i_2}, p_{i_3}$ be the vertices of element T_i . In T_i , we estimate f_i linearly as

$$f_i(x) = \sum_{k=1}^{3} \xi_{i_k} f(p_{i_k}),$$

where nonnegative ξ_{i_k} are given by the barycentric coordinates (Chung, 2001; Sadiku, 1989, 1992; Tang et al., 1999). In the barycentric coordinates, any point $x \in T_i$ is uniquely determined by two conditions:

$$x = \sum_{k=1}^{3} \xi_{i_k}(x) p_{i_k}, \sum_{k=1}^{3} \xi_{i_k}(x) = 1.$$
 Let's see chapter 4.6

Limitation: Computational bottleneck

Challenge: Solve the above matrix equation for extremely large matrices.

Implicitly Restarted Arnoldi method

First 10 orthonormal basis on left hippocampus

Basis functions will be used to construct a smoothing kernel.

Limitation: No common coordinate system

There is no common extrinsic coordinate system for every manifolds.

Need an extrinsic approach for local shape comparison: deformable modeling

How to match surfaces intrinsically

Landmarks: Identify min and maximum of eigenfunctions

Develop thin-plate spline with landmarks.

MATLAB demonstration

Data smoothing on surface models

Heat kernel smoothing on surface

Heat kernel:

$$K_t(p,q) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \psi_i(p) \psi_i(q)$$

$$K_t * f = \int_{\mathcal{M}} K_t(p, q) f(q) \ dq$$

X-coordinate on mandible surface

smoothed with bandwidth 10 and 1269 eigenfunctions

Heat kernel smoothing of hippocampus

Heat kernel smoothing on mandible shape

Heat kernel smoothing (Seo et al., 2010 MICCAI)

Iternated kernel smoothing (Chung et al., 2005 Neurolmage)

MATLAB demonstration

Statistical Analysis

2nd eigenfunction of elongated objects

Hot spot conjecture:

Min and max always occur at the extreme end points

Center of isocontour circles

MATLAB demonstration

Elongation of mandible (length increase)

Elongation of mandible (angle decrease)

Growth projectory

We are becoming more 주걱 턱 as we gets older.

Need more data to differentiate gender specific growth difference.

Left hippocampus surface template

Total number of subjects 124

High income family **86** = 24 males + 62 females Average age = 140 +/- 45 months = 12+/- 4 years old

Low income family **38** = 13 males + 25 females Average Age= 137 +/- 45 months = **12 +/- 4 years old**

Balanced study design except there is no info on handness.

Each subject has multiple MRI scans (1-2 scans).

Longitudinal Image processing pipeline

Deformation form the template to Scan2 is given by warp1 + warp2.

Fixed effect model accounting treating multiple scans within a subject as indepdenent

displacement = age + gender + group + age*group

Linear mixed effect model accounting for intercorrelation of multiple scans within a subject

displacement = age + gender + group + age*group

min t = -3.3398, corrected pvalue = 0.025

Right hippocampus

Linear mixed effect model on left hippocampus

displacement = age + gender + group + <u>age*group</u>

min t = -1.9589, corrected pvalue > 0.4

Summary

Family income level is highly correlated with hippocampus growth.

Adverse environment, stress

→ hippocampus → memory loss

Lecture 9
Brain Network Modeling

Read

lee.2011.SPIE – sparse network modeling

Chung.2011.SPIE – epsilon neighbor

lee.2011.ISBI -- rips filtration

kim.2011.ISBI -- epsilon neighbor

