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Everyone submitted research proposal? 

Research proposal (10% of the final grade) 

What is expected: 

Organization (5 points) 
Depth & complexity of proposal (5 points) 
Methodological Innovation & novelty (5 points) 
Sufficient literature review (5 points) 

Penalty for late submission (5% / day) 

Minimum requirement for A-grad report:  
at least 4 page with sufficient number of references excluding 
references. I don’t mind receiving 10 page proposals.  



Type-I error computation: 

Euler characteristic based random field theory 
Worsley et al., Human Brain Mapping, 1996 

Uses Morse Theory to link analytical & geometric problem 
to topology 

Why do we need topological approaches?  

Usual scientific model: 

Correlated test statistic:   

Chung et al. 2009. Information processing in Medical Imaging (IPMI) 
Read chung.2009.IPMI.pdf 



Multiple Comparisons 

! 

X(t) = µ(t) + e(t), t " #
Search region 
Whole brain or ROI 

If there is a point            such that                        ,  
reject the null hypothesis.  

! 

µ(t0) > 0

For smoothed images, clustered voxels around         will 
satisfy                        .                          

! 

µ(t) > 0

Read Chapter 1.5 



Ex. fMRI Multiple Comparisons 

•  4-Dimensional Data 
–  1,000 multivariate observations, 

each with 100,000 elements 
–  100,000 time series, each  

with 1,000 observations 
•  Massively Univariate 

Approach 
–  100,000 hypothesis 

tests 

1,000 

1 

2 

3 

Tom Nicholes 



Point-wise inference 

At each fixed t, 

! 

H0 is true iff.             is true for all t: 

! 

J0(t)

! 

H1 is true iff             is true for some t: 

! 

J1(t)



Test statistic and rejection rule 
•  Hypothesis testing requires a test statistic and the 

corresponding rejection rule.  

•  For one sample test, we can use Z-stat or T-stat. In 
many applications, Z-stat is sufficient since T-stat is 
approximately Z-stat for large degrees of freedom. 

•  Then we construct a rejection rule: 
Large T-stat value --> reject the null hypothesis 
Small T-stat value --> accept the null hypothesis 



Type-I error (alpha-level) 

•  The type-I error is the probability of rejecting the null 
hypothesis (there is signal) when the null hypothesis 
(there is no signal) is true. 

•  The type-I error is the probability of detecting false 
positives. 

•  The type-I error computation requires a statistic (Z-
stat. t-stat, F-stat, Chi-square stat. etc). 

•  Example: Z-stat. If the Z-statistic value obtained from 
measurments is 1.65, alpha=0.05=P(Z>1.65). 



Alpha-level for multiple comparisons 
Family-wise error rate (FER) 



Corrected P-value 

•  P-value: the smallest alpha-level at 
which the null hypothesis is rejected. 

Example: P(Z > observed z-stat. value). 

•  Corrected P-value is the P-value 
corrected for multiple comparisons. 

Determining the distribution of sup T(t) is very hard  



Bonferroni correction 
•  Assume there are m-voxels in the 

search region: 

This becomes exact if T statistics are not correlated. We 
control each T statistic separately. 



Z ~ N(0,1) noise 

P(Z>1.65)=0.05 

Bonfenoni correction 
thresholding at 1.65 
5% false positives 

Bonferroni Correction Simulation 

For 1 million voxels, 50000 voxels will be 
found to be signal (false positives)  
! Need multiple comparison correction  



fMRI verbal fluency block design example 

FDR ! 0.05 
t0 = 3.8119 

FWER ! 0.05 
Bonferroni 
t0 =  5.485 

Tom Nicholes 
Statistical Methods in NeuroImaging 
Attend next year’s class  



MATLAB demonstration 



Brain imaging research done for 21 years 
between 1987-2008. The first major publication in 
1992. 
See Chapter 1.2 for basics on random fields 

Random Field Theory 
Keith Worsley (1951-2009) 



Random Field Theory Assumptions 

•  Images need to follow Gaussian. 

•  Constructed statistics need to be sufficiently 
smooth. If underlying images are smooth, 
constructed statistics are smooth. 

•  The data need to be stationary (uniform 
FWHM within a search region). If not, we 
average FWHM across voxels. This 
requirement can be relaxed.  



Nonuniformity of FWHM 



Excursion Probability 

z = -10 z = 0 z = 10 

(Adler, 1984) 



Change of 
excursion set 



Heuristic Argument for Adler’s formula 

! 

P
t"#
supT(t) > h
$ 

% 
& 

' 

( 
) * P(+(Ah ) > 0) * E(+(Ah ))

For very high h value, the Euler characteristic counts 
the number of clusters, which is one. 



# neighbors      1                     2                             2                               3                        4 

#   Vertex           2                     1                            0                               0                         0 

   # Edge           3                     2                            2                                1                        0 

   # Face           1                     1                            1                                 1                        1 

EC change         0                     0                          -1                                  0                        1 



EC = N – E + F 
     =10 – 10 + 1 

     = 1 

EC = N – E + F 
     =14 – 18 + 4 

     = 0 

Filling hole  
increase EC by 1 

Computing Euler characteristic (2D)  



Computing Euler characteristic (3D)  

Partition search region into voxels. 
EC = # volume - # faces + # edges - # vertices 



P-value estimation only 
valid for high threshold 

Plot of expected EC over threshold 



MATLAB demonstration 



Expected Euler Characteristic 



Expected EC for a stationary Gaussian field 

Smoothness of random field. 
 Proportional to 1/FWHM 



MATLAB 
demonstration!



Application to autism!
Autistic children (n=17) 

Control subjects (n=14) 

Matched for age, handedness, IQ and head size 

Abnormal connectivity hypothesis in autism: 
local over-connectivity  

long-range under-connectivity 



Clustering coefficient  

At a given node p, there are k neighboring nodes. 

Newman et al., (2001) 

C(p)=  2/3               C(p)=0/3 



Clustering coefficient for a single subject 

001 120 



Control                               Autism 

Clustering coefficients for all subjects 

No 
group 

differenc
e 



#001 #120 

Degree of nodes for a single subject 



 red: autism 
blue: control 

Global degree 
distribution 

 pvalues = 0.024, 0.015 and 0.080 for degrees 1, 2 and 3. 

More low degree nodes in 
autism 

= global under-connectivity in 
autism 



Degree of nodes for all subjects 

Control                               Autism 



Largest connected component for 4 subjects 

In average  96% of all nodes are connected to each 
other. We believe 100% of all nodes are supposed to be 
connected.  4% is a processing noise caused by weak 

connections. 



Group difference in disconnected components  

Control=blue 
Autism=red high clustering on the right parietal 

lobe 
(pvalue = 0.01)  



Discussion!
Left amygdala 

Right amygdala 

Correlating facial 
emotion 

discrimination task 
response and 

amygdala shape 

Amygdala network correlated with behavioral measures 

Chung et al., Neuroimage 
2010 

group difference at lateral nuclei 



Structural connectivity without 
DTI 

NC=neglected children 



Probabilistic connectivity map 
using DTI  

Transition probability of random walk is iteratively computed from the seed voxel. 

Compare this with our Jacobian determinant-based connectivity map. 



NC=neglected children 

White matter connectivity based on correlating Jacobian 
determinant  



No need for DTI doing structural connectivity 
analysis 



Speaker:  
Jee Eun Lee, PhD. 
Waisman Laboratory for Brain Imaging and Behavior 
University of Wisconsin-Madison 

Time: October 22 Friday 11:00-11:50am 
Place: SNUH Bldg 001 (�� ��) Rm. 308  

Title: Diffusion tensor imaging and its applications in 
autism  

Abstract: Diffusion tensor imaging (DTI) is a non-invasive imaging method for 
assessing the characteristic and organization of tissue microstructures. Since 
DTI is sensitive to abnormal tissues, this fact has been exploited in 
characterizing various clinical populations. In this talk we first discuss the 
basic tensor model in DTI and a method for acquiring less noisy DTI data by 
applying anisotropic diffusion weighting schemes. Secondly we present our 
new method “tissue-specific smoothing-compensated voxel based analysis” 
and results from applying the method to DTI of autistic children. 



KAIST-SNU JOINT WORKSHOP ON 
SPARSE DATA RECOVERY AND ITS 
APPLICATION TO MEDICAL IMAGING 

Time: November 9 Tuesday 10:00am-5:00pm 
Place: SNUH ���	� 



Lecture 8 

Geometric Computation 

Read 

seo.2010.pdf 
chung.2004.ISBI.pdf 

Lecture 9-10 More on  network modeling 
(not going to teach about network complexity measures) 


