Computational Methods in Neurolmage Analysis

Instructor: Moo K. Chung

mkchung@wisc.edu

Lecture 5
Curvilinear Structure Modeling

October 1, 2010

Curvilinear brain structures

White matter fiber tracts
Corpus callosum boundary
Major sulcal lines

White matter fibers

www.vh.org

Fibers passing through the splenium of the corpus callosum

James Gee

Diffusion Tensor Imaging

Mori and van Zijl NMR Biomed 2002

isotropic diffusion

diffusion tensor

anisotropic diffusion

$$p(x \mid x_o, \tau) = \frac{1}{\sqrt{(4\pi\tau)^3 |\underline{D}|}} exp\left(\frac{-(x - x_o)^T \underline{D}^{-1}(x - x_o)}{4\tau}\right)$$

transition probability from x_0 to x

Tracts passing through the splenium of the corpus callosum

Average tracts across 74 subjects (42 autistic 32 control)

Average of average

Read section 8.3

Limited number of literature on parametric model of white fiber tracts

Clayden et al. IEEE TMI 2007

Cubic B-spline is used to model and match tracts. :computational nightmare

Batchelor et al. MRM 2006

Sine and cosine Fourier descriptors are used to extract global shape features for classification

: cosine basis is sufficient

Orthonormal basis in [0,1]

$$\Delta f + \lambda f = 0$$

Eigenfunctions form orthonormal basis

With periodic constraint

$$f(t+2) = f(t)$$

$$\sin(l\pi t), \cos(l\pi t)$$

Additional symmetric constraint

$$f(t) = f(-t)$$

$$\psi_0 = 1, \psi_l = -l^2 \pi^2$$

$$\psi_0 = 1, \psi_l = \sqrt{2} \cos(l\pi t)$$

Fourier analysis in [0,1]

$$\psi_0 = 1, \psi_l = \sqrt{2}\cos(l\pi t)$$

$$\sum_{l=0}^{\kappa} f_l \psi_l(t) \to f$$

$$f_l = \langle f, \psi_l \rangle = \int_0^1 f(t)\psi_l(t) dt$$

This integral can be computed by matrix inversion

White matter fiber tract model

parameterization

88.1799	56.6336	5.7367
-12.4775	-11.2552	-2.0791
2.4336	-15.4428	-0.4021
4.3956	2.2733	-0.9354
-0.0106	-0.0674	0.6999
2.1773	-2.4194	-0.1176
0.5808	0.8390	1.2942
0.0615	-0.1893	0.1188
-0.2629	0.7524	0.1089
0.7909	-0.7276	-0.1901
0.5458	0.6236	0.6939
0.4295	-0.4337	0.2185
0.2150	0.4157	0.0254
0.1584	-0.1973	0.0762
-0.1557	0.2466	-0.1086
0.0632	-0.0978	-0.0208
0.0389	-0.0143	-0.0284
-0.0014	-0.1193	0.1970
0.0004	0.0129	-0.0198
0.1342	0.0002	0.0260
_		

Any tract can be compactly parameterized with only 60 coefficients.

Tract registration is done by matching these parameters.

basis expansion

$$(x, y, z)' = \sum_{l=0}^{19} \beta_l \cos(l\pi t)$$

Cosine series representation

Random Simulation of curves

We have performed a simulation study to proposed framework can detect small tract between two collection of similarly shaped the parametric curve

as a basis for simulation, we have generated two groups of random curves. This gives a shape of a spiral with increasing radius along the z-axis. The first group consists of 20 curves generated by

$$(x, y, z) = (s \sin(s + e_1), s \cos(s + e_2), s + e_3),$$

where $e_1, e_2, e_3 \sim N(0, 1)$. The second group consists of 20 curves generated by

$$(x, y, z) = ((s + e_4)\sin(s + 0.1), (s + e_5)\cos(s - 0.1), s - 0.1),$$

where $e_4, e_5 \sim N(0, 0.2^2)$. The non-additive noise is given

MATLAB Demonstration

Corpus callosum boundary

Partial Volume Effect & discretization error

Level Set Method

- Developed by Osher and Sethian in 1980's.
- It is a numerical method for propagating the boundary of an object.
- Mainly used in segmenting objects in an image.
- Idea: Start with an initial closed curve in a region, and represent it as an expanding front satisfying Hamilton-Jacobi equation.

Zero level set of a function defines a closed boundary

$$\psi(x,y) = 0$$

Hamilton-Jacobi equation

The boundary moves in the normal direction with speed function *F*:

signed distance function to the boundary

Propagation speed of the boundary

MATLAB: http://barissumengen.com/level_set_methods/

Fan Ding

Vein segmentation

Sethian's result

White matter segmentation

Inner surface extraction

Corpus callosum boundary segmentation

Tomas Hoffman

Taubin's surface & curve fairing approach

$$x' = x + \lambda \Delta x \qquad 0 < \lambda < 1$$
 Laplacian

$$\Delta x = -Kx \qquad K = \frac{1}{2} \begin{pmatrix} 2 & -1 & & -1 \\ -1 & 2 & -1 & \\ & \dots & \dots & \dots \\ -1 & & -1 & 2 \end{pmatrix}$$

$$x' = (I - \lambda K)x$$

Smoothing Results

Taubin's curve fairing

MATLAB Demonstration

Snake (active contour)

Active Contour (snake): Kass et al. in 1987

An ordered control points p_1 , p_2 ,... p_n that will capture the boundary of an anatomical object

We move these control points such that they minimizes a certain energy

Read section 2.3 MATLAB http://www.iacl.ece.jhu.edu/static/gvf/

Basic form of active contour

Snake movement

Active contour in action

Initialization

5th iteration

15th iteration

Ultrasound image example

Minimization of energy

Parameterization of boundary C

$$E(C) = \alpha \int |X'(p)|^2 + \beta \int |X''(p)| - \lambda \int |\nabla I(X(p))|$$
 Internal Energy External Energy

Euler-Lagrange equation:

$$-\frac{d}{dp}(\alpha X') + \frac{d^2}{dp^2}(\beta X'') - \lambda \Delta I(X) = 0.$$

The equation is solved numerically by the finite difference scheme.

Fourier series representation of closed curves

Application:corpus callosum shape classification

Shubing Wang

Other segmentation techniques

Segmentation by image intensity histogram

CSF gray matter white matter

Gaussian mixture model

$$f(y) = pf_1(y) + (1 - p)f_2(y)$$

$$f_1(y) \approx N(\mu_1, \sigma_1^2)$$

$$f_2(y) \approx N(\mu_2, \sigma_2^2)$$

p = mixing proportion

Parameters are estimated by MLE

Maximum likelihood function

$$L = \prod_{i=1}^{n} [pf_1(y_i) + (1-p)f_2(y_i)]$$

$$\log L = \sum_{i=1}^{n} \log [pf_1(y_i) + (1-p)f_2(y_i)]$$

Solve
$$\frac{\partial \log L}{\partial p} = 0$$
 numerically

Bayesian framework

 Once we obtained all parameters of the Gaussian mixture model, we can compute the posterior tissue probability map

Bayesian framework Prior tissue probability maps

ICBM Tissue Probabilistic Atlases
Source: C. Phillips

Bayes' theorem

 Posterior probability can be obtained from a prior probability

$$P(class \mid intensity) = \frac{P(intensity \mid class)P(class)}{\sum_{class}P(intensity \mid class)P(class)}$$
Likelihood Prior map

: the probability obtaining image intensity given class.
This can be obtained from our Gaussian mixture model

Lecture 6

Graph theory & brain network analysis

Topological structure of point cloud data

Read

chung.2010.SPIE...

singh.2007.topology....