Computational Methods in NeuroImage Analysis

Instructor: Moo K. Chung mkchung@wisc.edu

Lecture 3 Spherical Harmonic Representation (SPHARM)

September 17, 2010

Read Chapter 7 of the textbook

Spherical harmonic (SPHARM) representation

It is a technique for parameterizing anatomical boundaries using the spherical harmonic basis.

The surface coordinates x,y, z are expressed as a linear combination of basis functions. For instance,

$$x(p) = \sum_{j=0}^{k} \beta_j \psi_j(p)$$

Parameterization using polynomials

$$x(p) = \sum_{j=0}^{k} \beta_j \psi_j(p)$$

We use {1, p, p^2, p^3, p^4, ...} as a basis.

Parameters are estimated using the least squares method.

Estimating Fourier coefficients

- For each point p_i , we have measurement $f(p_i)$.
- Corresponding Fourier series:

$$f(p_i) = \beta_0 \phi_0(p_i) + \beta_0 \phi_0(p_i) + \dots + \beta_k \phi_k(p_i)$$

• Matrix form:

$$F = \Phi \beta$$
$$\beta = (\Phi' \Phi)^{-1} \Phi' F$$

• This is a nontrivial linear problem

See MATLAB demonstration CMN.lecture03.SPHARM.09.17.2010.m

Surface Parameterization via quadratic surface

Global: tensor splines, SPHARM Local: quadratic surface fitting

$$X(u^{1}, u^{2}) = \begin{pmatrix} x_{1}(u^{1}, u^{2}) \\ x_{2}(u^{1}, u^{2}) \\ x_{3}(u^{1}, u^{2}) \end{pmatrix}$$

 $s(u^1, u^2) = \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_1^2 + 2\beta_4 u_1 u_2 + \beta_5 u_2^2 + \cdots$

Motivation for surface parameterization

Compared to other 3D volumetric techniques, surface based approach can quantify cortical variations better.

Ventricle enlargement

Age 14

Age 19

Final surface extraction result

Inner surface

Outer surface

Continuous parameterization by spherical harmonics

Data structure for polygonal mesh (autism_cortical_surface.mat)

Coordinates for subject 1								
Vertex	1	2	3	4	5	6		40962
Х	57.1876	41.0450	-53.1115	-38.1080	1.8440	-0.2458		
у	21.6388	-56.3448	29.8912	-65.5394	22.9715	9.4176		
Z	2.9667	21.1399	-5.5088	23.6724	21.5146	16.9014		
Thickne	ess 5.0	4.9	3.0	2.1	3.4	4.5		
Coordinates for subject 2								
Vertex	1	2	3	4	5	6		40962
X	53.4240	41.0552	-61.4073	-43.2099	1.6256	-3.9101		
у	22.5535	-56.7731	20.9221	-65.9948	22.7979	29.7043		
Z	7.1866	22.4754	-0.1368	21.3962	20.2838	-10.8959		
Thickne	ess 5.5	3.4	2.7	5.1	3.7	4.5		

Corresponding vertices have approximate anatomical homology.

Quadratic surface fitting

$$s(u^1, u^2) = \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_1^2 + 2\beta_4 u_1 u_2 + \beta_5 u_2^2 + \cdots$$

Riemannian metric tensors

$$g = \begin{pmatrix} 1+\beta_1^2 & \beta_1\beta_2\\ \beta_1\beta_2 & 1+\beta_2^2 \end{pmatrix} \qquad l = \begin{pmatrix} \beta_3 & \beta_4\\ \beta_4 & \beta_5 \end{pmatrix}$$

Mean curvature

$$K_M = \frac{\operatorname{tr}(g^{-1}l)}{2} = \frac{\beta_3(1+\beta_2^2)+\beta_5(1+\beta_1^2)-2\beta_1\beta_2\beta_4}{2+4(\beta_1^2+\beta_2^2)}$$

Polynomial Regression on irregular triangular mesh

$$Y = \mathbb{X}\beta$$

$$\begin{pmatrix} u_1^3 \\ u_2^3 \\ \vdots \\ u_m^3 \end{pmatrix} = \begin{pmatrix} u_1^1 & u_1^2 & (u_1^1)^2 & u_1^1 u_1^2 & (u_1^2)^2 \\ u_1^1 & u_2^2 & (u_2^1)^2 & u_2^1 u_2^2 & (u_2^2)^2 \\ \vdots \\ u_m^1 & u_m^2 & (u_m^1)^2 & u_m^1 u_m^2 & (u_m^2)^2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

Mean Curvature

Gaussian Curvature

Bending Energy for 14 year old subject

Bending energy or thin-plate spline energy can be used to measure the curvature of the surface. Between ages 12 and 16, it increases both locally and globally.

CVPR 2003

Principle curvature maps projected on the average template

Curvature change *t* map between age 12 and 16

Compute cortical curvature and map curvature to unit sphere

2D problem

3D problem

Unit sphere gives a natural coordinate system (spherical coordinates).

Sulcal pattern matching

Misalignment

Sulcal pattern matching by minimizing objective function = curvature difference - smoothness of deformation

See Paul Thompson's earlier IEEE TMI paper

Surface area expansion/shrinking

Local surface area element:

$$\sqrt{|g|} = \sqrt{1 + \beta_1^2 + \beta_2^2}$$

Spherical harmonic representation was used to analytically compute and smooth surface area element.

Local area expansion with respect to a template (it ranges between 0 and 1.3)

Surface area change t map

dilatation rate between age 12 and 16 min = - 57 % mean = - 0.02 % max = 65 %

Laplace-Beltrami Operator

$$\Delta_X F = \frac{1}{|g|^{1/2}} \sum_{i,j=1}^2 \frac{\partial}{\partial u^i} \left(|g|^{1/2} g^{ij} \frac{\partial F}{\partial u^j} \right)$$

Estimating differential operator on manifolds

 $\widehat{\Delta}F(p_0) = w_0F(p_0) + w_1F(p_1) + \cdots + w_mF(p_m)$

Estimation via conformal transformation

 $s(u^{1}, u^{2}) = \beta_{1}u_{1} + \beta_{2}u_{2} + \beta_{3}u_{1}^{2} + 2\beta_{4}u_{1}u_{2} + \beta_{5}u_{2}^{2} + \cdots$ $g=egin{pmatrix}1+eta_1^2&eta_1eta_2\eta_1eta_2&1+eta_2^2\end{pmatrix}$ Laplace-Beltrami operator is invariant $s(v^1, v^2) = \gamma_1(v^1)^2 + \gamma_2 v^1 v^2 + \gamma_3(v^2)^2 + \cdots$ $g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$\Delta_X = \frac{1}{\lambda} \left(\frac{\partial^2}{\partial^2 u^1} + \frac{\partial^2}{\partial^2 u^2} \right)$$

Thin Plate Spline Parameterization

Measurement *f* is represented as

$$f(p) = \sum_{i} \alpha_{i} \phi_{i}(p) + \sum_{j} \beta_{j} \varphi(p - p_{j})$$

where ϕ_i is polynomial basis and φ is the TPS radial basis

Parameters are estimated by minimizing

$$\min_{f} \sum_{i=1} |y_i - f(p_i)|^2 + \lambda J_3^2(f),$$

Thin Plate Spline (TPS) segmentation and modeling

TPS represents anatomical boundary as the zero level set of smooth function consists of polynomial and radial basis functions (Wahba, 1990; Xie et al., 2005a).

Spherical Harmonic (SPHARM) Representation

- Spherical harmonics are basis functions on a unit sphere.
- SPHARM can be used to construct the Fourier series expansion of a functional measurement
- SPAHRM has been used in parameterizing anatomical boundary
- New more localized approaches: wavelets, weighted-SPAHRM

Spherical harmonics

Y_{lm} is called the ${\it spherical\ harmonic\ of\ degree\ l\ and\ order\ m\ .}$

$$Y_{lm} = \begin{cases} c_{lm} P_l^{|m|}(\cos \theta) \sin(|m|\varphi), & -l \leq m \leq -1, \\ \frac{c_{lm}}{\sqrt{2}} P_l^0(\cos \theta), & m = 0, \\ c_{lm} P_l^{|m|}(\cos \theta) \cos(|m|\varphi), & 1 \leq m \leq l, \end{cases}$$

where $c_{lm} = \sqrt{\frac{2l+1}{2\pi} \frac{(l-|m|)!}{(l+|m|)!}}$ and P_l^m is the associated Legendre polynomials of order m .

Spherical harmonic of degree I and order m

SPHRM representation

•Given functional measurement *f(p)* on a unit sphere, it is modeled as

$$f(p) = \sum_{l=0}^{k} \sum_{m=-l}^{l} f_{lm} Y_{lm}(p) + e(p)$$

e: noise (image processing, numerical, biological) f_{lm} : unknown Fourier coefficients

•The parameters are estimated in the least squares fashion.

 For measurements f(p₁), f(p₂), · · · , f(p_n), (n > 46,000), we set up normal equations:

$$f(p_i) = \sum_{l=0}^k \sum_{m=-l}^l \beta_{lm} Y_{lm}(p_i).$$
 i-th mesh vertex

Matrix form:

$$\underbrace{\begin{pmatrix} f(p_1) \\ f(p_2) \\ \vdots \\ f(p_n) \end{pmatrix}}_{\mathbf{F}} = \underbrace{\begin{pmatrix} Y_{00}(p_1) & Y_{1-1}(p_1) & Y_{10}(p_1) & \cdots & Y_{kk}(p_1) \\ Y_{00}(p_2) & Y_{1-1}(p_2) & Y_{10}(p_2) & \cdots & Y_{kk}(p_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Y_{00}(p_n) & Y_{1-1}(p_n) & Y_{10}(p_n) & \cdots & Y_{kk}(p_n) \end{pmatrix}}_{\mathbf{Y}} \underbrace{\begin{pmatrix} \beta_{00} \\ \beta_{1-1} \\ \vdots \\ \beta_{kk} \end{pmatrix}}_{\beta}$$

Estimation: $\widehat{\beta} = (\mathbf{Y}'\mathbf{Y})^{-1}\mathbf{Y}'\mathbf{F}$.

Cortical Surface Modeling

Deformable surface algorithm

Spherical angle based coordinate system

Mapping from cortex to unit sphere Each x, y, z Cartesian coordinates are represented independently.

Original Cortex

Outer Surface

Inner Surface

80 degree SPHARM

FreeSurfer results

Gibbs phenomenon (ringing artifacts) on surface

Determining the optimal degree via stepwise forward model selection framework

Consider the following (k-1)-th degree model

$$f(p_i) = \sum_{l=0}^{k-1} \sum_{m=-l}^{l} e^{-\lambda(l+1)\sigma} f_{lm} Y_{lm}(p_i) + \epsilon(p_i), \ i = 1, \cdots, n$$

where ϵ are Gaussian random variables. Testing if the k-th degree model is better than the previous (k - 1)-th degree model can be done by testing

$$H_0$$
: $f_{km} = 0$ for all $-k \le m \le k$.

Then under the null hypothesis, the test statistic is

$$F = \frac{(\mathrm{SSE}_{k-1} - \mathrm{SSE}_k)/(2k+1)}{\mathrm{SSE}_{k-1}/(n-(k+1)^2)} \sim F_{2k+1,n-(k+1)^2}$$

Weighted-SPHARM at the 80th degree for different bandwidth

Root mean squared error (RMSE) = error between original surface and weighted-SPHARM

For each bandwidth σ , optimal degree is automatically selected via **forward best model selection procedure**.

Optimal degree= first P-value >0.05

Weighted-SPHARM at different bandwidth

- •The degree is selected automatically.
- •The only free parameter in the model is the bandwidth.

SPHARM estimation of cortical thickness

Thickness estimation based on traditional method

Too much smoothing

Weighted-SPHARM of cortical thickness

Weighted-SPHARM at different scale

78th degree SPHARM representation

The coefficients are treated as a multivariate measure and feed into classification techniques.

MATLAB Demonstration

Lecture 4

Iterative linear model fitting methods:

Matching Pursuits

Iterative Residual Fitting (IRF) algorithm

Read

chung.2008.sinica mallat.1993