Computational Methods in NeuroImage Analysis

Instructor: Moo K. Chung
mchung@wisc.edu

September 3, 2010
Instructor

Moo K. Chung 정무경
Associate Professor of Biostatistics and Medical Informatics
University of Wisconsin-Madison

Visiting Associate Professor of Brain and Cognitive Sciences
Seoul National University

Office Hour: Friday 12:00-1:00pm.
Email: mkchung@wisc.edu
Official Webpage: www.stat.wisc.edu/~mchung
http://brainimaging.waisman.wisc.edu

Your instructor is from

Waisman Laboratory for Brain Imaging and Behavior
3T MRI, PET, microPET, EEG, MEG, eye tracking, etc.
everything under a single roof. Research only facility.
6 faculty + 10 PhD level scientists + 10 postdocs + 5
administrative staff + 50 graduate students + plus many
undergraduate students + bunch of rodents and monkeys
Waisman laboratory for brain imaging

Active research areas: autism, depression, mood disorders, emotion related, meditation, DTI, MRI anatomical studies, developmental, animal studies

Dalai Lama & Richard J. Davidson
Course Aims

• To present **computational** and **statistical** techniques used in the field of brain image analysis, with an emphasis on actual **computer implementation**.

• MATLAB is the language of instruction but students can use any computer language to do a course project.
Target Audience

• This course is designed for researchers and students who wish to analyze and model brain images quantitatively beyond t-statistics and ANOVA.

• The course material is applicable to a wide variety of other medical and biological imaging problems.

• Course requirement: none.
Course Evaluation

• Submission of research proposal & preliminary analysis before the course drop deadline. 10%

• Give 20-minute oral presentation at the end of the semester. 20%

• Final exam at the end of November. 30%

• Submission of the final research report of about 15-25 pages excluding figures, tables and references. It also should contain more than 20 related references. 40%
Course Workload

• Approximately 10-20 hours/week depending on the qualification of students assuming you have 60-80 work hours/week.

• Read my lecture notes, textbook and about two assigned papers per week.
Course Topics

• Numerical techniques for (ordinary and partial) differential equations, FEM
• Spectral methods (Fourier analysis, PCA, sparse-PCA, functional-PCA, marching pursuit)
• Optimization (least squares, multivariate general linear model (MGLM), L1-norm minimization, maximum likelihood)
• Discrimination and classification (linear, quadratic and logistic discrimination and SVM).
• Geometric and topological computation (curvatures, Euler characteristics, other topological invariants).
• Brain connectivity & network modeling
Course website

brainimaging.waisman.wisc.edu/~chung/neuro.processing/

Lecture notes will be uploaded 30mins before each lecture. Feel free to bring laptops for note taking and web surfing.

Textbook

“Computational Neuroanatomy: The Methods” to be published in 2011. It can be downloaded from the webpage. It’s huge at 60-100MB.
Sample data & Codes

Look for directory `\data` and `\matlab` few hours before each lecture starts.

Class discussion board

groups.google.com/group/brainimage

If you don’t become a member, you won’t receive any email from me.
Tips for students

1. Your best friend
 www.google.com

2. Your second best friend
 scholar.google.com
Occam’s razor

• When given two equally valid explanations (model) for a phenomenon, one should embrace the less complicated formulation (model).

• All things being equal, the simplest solution tends to be the best one.

• If you want to try complicated modeling, do the simplest model first.
Do not try bang your head on the wall trying to do a complicated analysis when you can’t even build a simpler model.

This bear knows what Occam’s razor is.
1. **No plagiarism of any sort** will be allowed in the course.

2. Work alone for the project. But feel free to discuss all other matters with classmates and the instructor.

3. Office hour: talk to me after each class or send email to mkchung@wisc.edu to set up the appointment.
Lecture 1

Overview of Computational Methods

September 3, 2010
DATA

- Brain images: various imaging modalities can be modeled and analyzed in a similar mathematical fashion.

- Examples of brain images: MRI, fMRI, PET, DTI
Positron Emission Tomography (PET)

Normal Brain

Brain of a 9-year-old girl suffering from epilepsy.

Montreal Neurological Institute
Functional MRI
Diffusion tensor imaging (DTI)

Tensor data
= 3 by 3 matrix values at each voxel are diffusion coefficients.

Andrew L. Alexander
University of Wisconsin-Madison
Principal eigenvectors of the diffusion coefficient matrix can be considered as the tangent vector of the stream lines that represents white fiber.

Intensity = eigenvalues
Streamline based tractography
second order Runge-Kutta algorithm (Lazar et al., HBM. 2003).
Tracts passing through the splenium of the corpus callosum
3T Magnetic resonance imaging (MRI)

Provide greater image contrast in soft tissues than computed tomography (CT)
Computational Issues in Brain Image Analysis

- Differential equations (ordinary & partial)
- Variation & optimization (least squares, L1 norm minimization)
- Spectral approaches (Fourier, PCA etc)
- Discrimination & classification
- Geometric & topological computation
Data & Image Visualization

Data & image visualization has to be your first step in analyzing images
Statistical visualization is an important issue
thresholded 3D pvalue map
Least squares estimation

statistical parameter estimation technique by the sum of squared residual
Cortical Surface
Polygonal mesh
Mesh resolution 3mm

82,190 triangles
40,962 vertices

Spherical harmonic representation

20,000 parameters per surface
Deformable surface algorithm McDonalds et al. (2001) NeuroImage

Multiscale triangle subdivision at each iteration increases the complexity of anatomical boundary
Parameterize mapping to a sphere

Deformable surface algorithm

Spherical angle based coordinate system
Spherical harmonic of degree l and order m

$$Y_{lm} = \begin{cases}
 c_{lm} P_l^m (\cos \theta) \sin(|m| \varphi), & -l \leq m \leq -1, \\
 \frac{c_{lm}}{\sqrt{2}} P_l^0 (\cos \theta), & m = 0, \\
 c_{lm} P_l^m (\cos \theta) \cos(|m| \varphi), & 1 \leq m \leq l,
\end{cases}$$
SPHRM representation

• Given functional measurement $f(p)$ on a unit sphere, we represent it as

$$f(p) = \sum_{l=0}^{k} \sum_{m=-l}^{l} f_{lm} Y_{lm}(p) + e(p)$$

e: noise (image processing, numerical, biological)

f_{lm}: unknown Fourier coefficients

• The parameters are estimated in the least squares fashion.
FreeSurfer results
6241 Fourier coefficients can be used to quantify individual anatomical shape variations

Average SPHARM coefficients

autistic control difference

78th degree Weighted-SPHARM representation
Weighted-SPHARM

Color scale= x-coordinate
Maximum likelihood estimation

statistical parameter estimation technique by maximizing a likelihood function
Image segmentation is necessary to quantify anatomical substructures.
Segmentation based on Gaussian mixture model
SPM result

Automatic skull stripping can remove unwanted anatomical regions automatically.
Two-components Gaussian mixture model

\[f(y) = pf_1(y) + (1 - p)f_2(y) \]

\[f_1(y) \approx N(\mu_1, \sigma_1^2) \]

\[f_2(y) \approx N(\mu_2, \sigma_2^2) \]

\(p = \) mixing proportion \(\rightarrow \) estimated tissue density

Parameters are estimated by the EM-algorithm
Gaussian mixture modeling - EM algorithm

Shubing Wang
Merck
Segmentation result

Binary masks: 0 or 1
Gaussian kernel smoothing
Probability map [0, 1]

Gray matter White matter
Probabilistic segmentation

Mietchen & Gaser, 2009
Multivariate General Linear Model

Multivariate version of general linear model. SPM, AFNI do not have it. Only SurfStat has it.
Comparing rate of biological change between groups

Test null hypothesis

$Ho: \text{slopes in linear models are identical}$

Question: what statistical procedure should we use?

Next question: what do you do with vector data?
Facial emotion discrimination task response time
24 emotional faces, 16 neutral faces

Dalton et al. (Nature Neuroscience 2005)
Correlating behavioral and imaging measures
Amygdala manual segmentation

Why manual? It's one of few structures we can't segment automatically with 100% confidence.

Nacewicz et al., Arch. Gen. Psychiatry 2006

Chung et al., NeuroImage 2010
2D surface model of left amygdala using marching cubes algorithm
2D model of left amygdala of subject 001
Displacement vector fields in multiple images

\[U^j = U^j_{s1} - U^j_{s2} \]
Displacement vector field on a template

\[P_{n \times 3} = X_{n \times p} B_{p \times 3} + Z_{n \times r} G_{r \times 3} + U_{n \times 3} \Sigma_{3 \times 3}; \]

- **displacement vector**
- **variable of interest**
- **nuisance covariates**
- **noise**
- **covariance matrix**
Difference between autism and controls
Interaction between shape and gaze fixation duration in autism
Finite Element Method

A numerical technique for discretizing a partial differential equation (PDE). PDE simplifies to a system of linear equations which can be solved by the usual least squares estimation.
Smoothing along anatomical tissue boundary to increase SNR

Initial Signal After 10 iterations After 20 iterations

Diffusion smoothing: isotropic diffusion equation
Smoothed cortical thickness

Thickness measure

Signal enhancement
Why do we smooth?

t-statistic map of Jacobian determinant change (volume change) for 28 normal subjects from age 12 to age 16.

10mm FWHM Gaussian kernel smoothing
Diffusion Smoothing

It can be shown that the convoluted signal \(F(x, t) = F^*(x, \sqrt{2t}) \) is the solution of a diffusion equation

\[
\frac{\partial F}{\partial t} = \Delta F, \quad F(x, 0) = f(x)
\]

where the \(n \)-dimensional Laplacian is given by \(\Delta = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \). The amount of smoothing is determined by the full width at the half maximum (FWHM) of Gaussian kernel

\[
F_{\text{FWHM}} = 4(\ln 2)^{1/2} \sqrt{t} = 2(2\ln 2)^{1/2} h
\]

Since the cortical surface in non-Euclidean, the above Laplacian is not well defined on the cortical surface. The generalization of the Laplacian to an arbitrary curved surface is called the Laplace-Beltrami operator and it is defined in terms of the Riemannian metric tensors. For the Riemannian metric \(ds^2 = \sum_{i,j=1}^n g_{ij} du^i du^j \), the Laplace-Beltrami operator is given by

\[
\Delta F = \frac{1}{|g|^{1/2}} \sum_{i,j=1}^n \frac{\partial}{\partial u^i} \left(|g|^{1/2} g^{ij} \frac{\partial F}{\partial u^j} \right)
\]

where \(g^{-1} = (g^{ij}) \) and \(|g| = \det(g_{ij}) \).
Finite Element Method

The ASP algorithm (MacDonald, et al., 2001) is used to extract the outer cortical surfaces each consisting of 81,920 triangles from MR scans. At this surface sampling rate, the average intervertex distance is 3-4 mm. In order to estimate the Laplace-Beltrami operator on a triangulated cortical surface, we use the finite element method (FEM) (Chung, 2001). Let $F(p_i)$ be the signal on the i-th node p_i in the triangulation. If $p_1, ..., p_m$ are m-neighboring nodes around $p=p_0$, the Laplace-Beltrami operator at p is estimated by

$$
\Delta F(p) = \sum_{i=1}^{m} w_i (F(p_i) - F(p))
$$

with the weights

$$
w_i = (\cot \theta_i + \cot \phi_i) / |T|
$$

where θ_i and ϕ_i are the two angles opposite to the edge $p_i - p$ in triangles and $|T|$ is the sum of the areas of m-incident triangles at p. Then the diffusion equation is solved via the finite difference scheme:

$$
F(p, t_{n+1}) = F(p, t_n) + (t_{n+1} - t_n) \Delta F(p, t_n)
$$

with the initial condition $F(p, t_0) = f(p_i)$. After N-iterations, the diffused signal is locally equivalent to Gaussian kernel smoothing with FWHM $= 4(\ln 2)^{1/2}N^{1/2}(t_N - t_0)^{1/2}$.

A typical triangular mesh of the outer cortical surface consisting of 81,920 triangles and 40,962 vertices.
Eigenvalues of Laplace-Beltrami operator $\Delta f = \lambda f$

Seo et al., MICCAI 2010
Heat kernel smoothing
cortical thickness
Cortical thickness = most widely used cortical measure

Chung et al., NeuroImage 2003
Cortical thickness

Inconsistent mathematical definitions. There are at least five different methods of measuring distance between tissue boundaries.

orthogonal projection from A to B

orthogonal projection from B to C
Laplace equation method for defining cortical thickness

\[\Delta f = 0 \]

Figure 4.
Two-dimensional example of Laplace’s method. Laplace’s equation is solved between S and S’, which have predetermined boundary conditions of 10,000 V and 0 V, respectively. Three examples of resulting intermediate equipotential surfaces are indicated for 2,500 V, and 5,000 V, and 7,500 V. Field lines connecting S to S’ are defined as being everywhere orthogonal to all equipotential surfaces, as exemplified by the line connecting P to P’.
Figure 7.
Close-up example of gradients of Laplace's solution in an axial plane from real data. The blue line represents the gray-white junction, and the red line represents the gray-CSF junction. The small arrows are projections of the gradient vectors in the axial plane. These arrows are tangent to the streamlines connecting the two surfaces. Arrows appear short when they are projecting predominantly out of the axial plane [e.g., at position (15,5)]. The gradients are insensitive to small segmentation errors as seen but the sulcal discontinuity at position (30,29).
Geometric computation

Geometric quantities such as curvatures, length, area, volume have been often used in characterizing brain shape.
Mean curvature can be used to quantify sulcal pattern
Application of curvature measure:
Tensor-based morphometry (TBM)

Thin-plate spline energy can be used to measure the curvature of the surface. Between ages 12 and 16, it increases both locally and globally.

Chung et al., CVPR 2003
Topological computation

Topological properties are invariant under shape deformation. So topological invariants can be used to characterize an object of interest.
Topological metric obtained from cortical thickness

Chung et al. IPMI 2009
Topology correction in images

Automatic hole patching is necessary to construct surface topologically equivalent to sphere.

Approximately 20,000 triangle elements
Mandible surface growth modeling

Quadratic fit of 9 male subjects over time in one particular point on the mandible surface
Worsley’s random field theory based approach

\[Z(x) \text{: Stationary isotropic random field in } x \in \Omega \subset \mathbb{R}^N \]

\[A_z = \{ x : Z(x) > z \} \text{ excursion set} \]

\[\chi(A_z) \text{: Euler characteristic} \]

\[P\left(\max_{x \in \Omega} Z(x) > z \right) \approx \mathbb{E}(\chi(A_z)) \]

(Adler, 1984)
T random field on manifolds

\[P \left(\max_{x \in \partial \Omega_{\text{atlas}}} T(x) \geq y \right) \approx 2 \rho_0(y) + \| \partial \Omega_{\text{atlas}} \| \rho_2(y) \]

Euler characteristic density

\[\rho_0(y) = \int_y^\infty \frac{\Gamma(n/2)}{((n-1)\pi)^{1/2} \Gamma((n-1)/2)} \left(1 + \frac{y^2}{n-1}\right)^{-n/2} dy, \]

\[\rho_2(y) = \frac{1}{\text{FWHM}^2} \cdot \frac{4 \ln 2}{(2\pi)^{3/2}} \cdot \frac{\Gamma(n/2)}{(n-1)^{1/2} \Gamma((n-1)/2)} \cdot y \left(1 + \frac{y^2}{n-1}\right)^{-(n-2)/2} \]

Worsley (1995, NeuroImage)

FWHM of smoothing kernel or residual field
Gaussianess may not be satisfied

Checking normality of imaging measures
Quantile-Quantile (QQ) plot showing asymmetric distribution

Longer tail
Fisher's Z transform on correlation

Increasing normality of data
Permutation test
model free statistical inference

More than 1500 permutations are needed to guarantee the convergence of the thresholding. 8 hours of running time in MATLAB.
Logistic discriminant analysis

Based on logistic regression that connects categorical variables to continuous variables, we can perform a discriminant analysis.
asymmetry analysis framework

Clinical population

Normal controls

template

image registration
Statistical Parametric Map
multiple comparison correction via the random field theory (Worsley et al. 1995) → not so trivial

\[P(\sup_{p \in \partial \Omega} Z(p) > h) \approx \sum_{d=0}^{2} \phi_d(\partial \Omega) \rho_d(h) \]

> 40000 correlated hypotheses

T-stat resulting showing group difference between autism and control

Very involving mathematical derivation
Discriminant Power Map

Hypothesis & P-value free approach

Logistic model

\[
\log \frac{\pi_i}{1 - \pi_i} = \beta_0 + \beta_1 n_i
\]

Probability of autism

Asymmetry index

Classification rule:

\[\pi_i > \frac{1}{2} \]

Leave-one-out cross-validation

Classification error rate
Discriminant Power Map

\[= 1 - \text{error rate} \]

Avoid the traditional hypothesis driven approach

No need to compute P-value \(\rightarrow\) No need for random field theory

Adaboost version with spatial dependency constrain

Singh et al., MICCAI 2008.
Classification for imaging biomarkers via logistic discriminant analysis

Red: mild cognition impairment (MCI)
Green: elderly normal controls
Brain Network Analysis

Graph theoretic approach to brain connectivity analysis. Various topological invariants are used to characterize brain connectivity.
Graph construction

Identify end points

-neighbor:
All points in the k-neighbor are identified as a single node in a graph
End points of tracts
Clustering coefficient

control

autism
Clustering coefficients for all subjects

Control Autism

No group difference
Degree of nodes: measure of local network complexity
Local degree distribution for all subjects

Control

Autism
Global degree distribution

More low degree nodes in autism = global under-connectivity in autism

pvalues = 0.024, 0.015 and 0.080 for degrees 1, 2 and 3.

Chung et al., HBM conference 2010
Lecture 2

Least squares estimation
General linear model
Multivariate general linear model

Read two papers put in the literature directory:

chung.2004.ni.autism.pdf ↩ GLM
chung.2010.NI.pdf ↩ MGLM