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Abstract
Diffusion tensor imaging offers a unique opportunity to characterize 
the trajectories of white matter fiber bundles non-invasively in the 
brain. Whole brain tractography studies routinely generate up to 
half million tracts per brain. The main computational challenge is to 
develop a unified and compact mathematical representation of 
large number of tracts. We have developed the cosine series 
representation (CSR) to parameterize, register and perform 
inference in a unified Hilbert space framework. CSR can be fairly 
useful in shape characterization of tracts but it cannot answer more 
complex hypothesis about brain connectivity. To address the brain 
connectivity problem, we built a scalable 3D graph network model 
and inference was performed in the ensemble of graphs for testing 
for over- and under-connectivity of the brain network. 
Computational issues and methods are illustrated with autism case 
studies. 



Nagesh	  Adluru,	  Jee	  Eun	  Lee,	  Mariana	  Lazar	  
Jane	  E.	  Lainhart,	  Andrew	  L.	  Alexander

University	  of	  Wisconsin-‐Madison

Acknowledgment



White matter fibers

www.vh.org 

James Gee 

Fibers passing through 
splenium of corpus callosum



Tractography

isotropic diffusion

anisotropic diffusion

transition probability from x0 to x

diffusion tensor

Mori and van Zijl NMR Biomed 2002

Second order Runge-Kutta 
algorithm with TEND 
(Lazar et al., HBM 2003)

TENsor Deflection (TEND) 

200 x 100 x 100 x 6  
=  12 million voxels



0.5-1 million tracts

White matter 
fiber tractography

Tractography result

Real brain

single tract parameterization



Previous studies
Very limited research on parametric model 
of white fiber tracts

Clayden et al. IEEE TMI 2007 
Cubic B-spline is used to model and match tracts.
:computational nightmare

Batchelor et al. MRM 2006
Sine and cosine Fourier descriptors are used to 
extract global shape features for classification
: inefficient representation



Our contribution

1. More efficient Fourier descriptor (uses less number of basis 
than before).

 2. Developed registration and averaging framework for 3D curves 
without numerically demanding optimization routines as in splines. 
 

accepted



sin(lπt), cos(lπt)

Orthonormal basis in [0,1]

Eigenfunctions form orthonormal basis

Solve it with periodic constraint

Additional symmetric constraint
Make it only 
valid in [0,1]



   88.1799   56.6336    5.7367
  -12.4775  -11.2552   -2.0791
    2.4336  -15.4428   -0.4021
    4.3956    2.2733   -0.9354
   -0.0106   -0.0674    0.6999
    2.1773   -2.4194   -0.1176
    0.5808    0.8390    1.2942
    0.0615   -0.1893    0.1188
   -0.2629    0.7524    0.1089
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    0.4295   -0.4337    0.2185
    0.2150    0.4157    0.0254
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   -0.1557    0.2466   -0.1086
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parameterization

basis expansion

Any tract can be compactly
parameterized with only 60
coefficients.
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Cosine series representation

Optimal degree 
chosen using the 
forward model 
selection method.Optimal degree



Least squares estimation

x, y, z  coordinate at pi



Discrepancy measure between two tracts



Histogram of discrepancy measure

The discrepancy measure can quantify 
the closeness of tract shapes  



Registering tracts

Average of 5 tracts

optimal displacement

Minimum is taken over the subspace 
spanned by the basis functions.



In a Hilbert space, Fourier series achieve 
optimality with respect to L2 norm.

optimal displacement based on our 
discrepancy measure



Given m representations

we define the average tract as

The average tract is simply given by averaging coefficients.

Defining average tract



Tracts passing through 
the splenium of the 
corpus callosum



Average of average



Fiber concentration analysis

42 autistic & 32 controlcontrol - autism

tracts passing 
through spleninum

Average tracts 

two sample
t-test on fiber 
concentration



Inference on representation
Compare tract shapes between the groups

This is done by testing the equality 
of mean tracts between the groups

Equivalent hypothesis

Two cosine representations are equivalent if and only if the coefficients match



0.0047 0.0023



(x, y, z) = (s sin s, s cos s, s), s ∈ [0, 10]

Validation via Random curve simulation

Bonferroni corrected 
pvalue 0.00005

Bonferroni corrected 
pvalue 0.294

Basic model

Add noise to the basic model



Discussion: Gibbs phenomenon



Diffusion smoothing

Wealth 
concentration
in Montreal area

Solve 
diffusion 
equation



How to fix Gibbs phenomenon in Fourier expansion?
Weighted Fourier Analysis, Weighted Spherical harmonic 
representation:  Chung et al., IEEE Trans. Medical Imaging. 2007, 2008
23 citations so far

Exponentially weight  the cosine series representation
and make the representation converges faster 

add expontional weight

diffusion:



Weighted Fourier Analysis

Input signal

Kernel smoothing: 

Weighted Fourier series:

PDE:

parameter spacemanifold

tracts, amygdala, 
hippocampus, 
cortical surface  

Self-adjoint operator: Flattening
parameterization



WFS representation for cortical shape

Color scale: X-coordinate value

bandwidth



Brain & behavior correlation

Eye tracking data
Weighted Fourier 
representation 

Partial correlation of thickness & gaze duration

   88.1799   56.6336    5.7367
  -12.4775  -11.2552   -2.0791
    2.4336  -15.4428   -0.4021
    4.3956    2.2733   -0.9354
   -0.0106   -0.0674    0.6999
    2.1773   -2.4194   -0.1176
    0.5808    0.8390    1.2942
    0.0615   -0.1893    0.1188
   -0.2629    0.7524    0.1089
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    0.5458    0.6236    0.6939

………………………

    



related to Euler characteristic, Betti numbers, 
Morse functions, Worsley’s random field theory 

cortical thickness smoothed with the weighted Fourier method

Persistence diagram

Persistence homology based image analysis
joint work with Peter Kim: IPMI 2009, MICCAI 2009

Topological classification  96% 
Previous method 90%

cortical flattening

Keith J. Worsley



Persistence on weighted 
Fourier represent of 1D signal

IPMI 2009



Discussion: spherical embedding of cosine 
series representation

How to make cosine series representation invariant under 
translation, rotation and scaling?

spherical projection
cosine series representation

quadratic constraint

I just can’t transform this 
into standard quadratic 
optimization problem!



Limitation of tract 
shape analysis

Difficult to do shape-to-shape correlation analysis

Can’t do brain connectivity analysis



Cosine series 
representation

Diffusion tensor 
imaging (DTI)

3D graph modelWhite Matter Fiber Connectivity

Second order Runge-Kutta 
streamline algorithm



How did I generate the 3D network graphs ?



Building DTI-based brain network graph
iteratively add one tract at a time 

Blue: graph consisting 
of 4 tracts

Orange: additional tract 
to be added



Iterative graph construction algorithm

Whole brain white matter 
fiber tractogpray

Iterative DTI network graph



MATLAB demonstration

38



Rubinov	  and	  Sporns,	  Neuroimage,	  2009	  

Various	  network	  complexity	  measures



Adjacency matrix

Degree of node = add along the 
vertical or horizontal direction



Degree distribution

Degree

Frequency

Blue: control
Red: autism Higher frequency in lower degree

= Over-connectivity in sparsely 
connected brain region

Brain	  network	  is	  known	  to	  have	  higher	  
clustering	  coefficient,	  shorter	  path	  length	  
and	  power	  law	  form	  of	  P(k)~k-‐x^3

Brain	  networks	  are	  suspected	  to	  follow	  the	  
paYern	  of	  small-‐world	  and	  scale-‐free	  
networks.



Steady-state oscillations in wave equation

Helmholtz equation

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/win03_cleve.html

MATLAB logo

L-shaped membrane

Intrinsic approach: spectral geometry



Isospectral shapes Shape spectrum

PCA on first 50 eigenvalues

A bunny can't be 
distinguished from
other stupid objects

Reuter et al, 2006 Computer-Aided Design



Generalized eigenvalue problem

Amygdala spectrum

discretization



Amygdala

Eigenvalue vs. degree

Red: autism
Gray: control

Weyl’s formula

Eigenvalues can’t discriminate 
similarly shaped objects.



Blue: control
Red: autism

Spectrum of adjacency matrix

At higher frequency,
we see group difference

Discretized version of Laplace-
Beltrami operator was used



Clustering coefficients
WaYs	  et	  al.	  Science	  1998,	  Milo	  et	  al	  Science	  2002



Space of adjacency matrices
Graph isomorphism problem

 Given adjacency matrices of same size A1 and A2 ,

A2 = PA1P
�

permutation matrix

Space of random 
permutation matrices

Now we can construct 
statistics on graphs and do 
power computation


