

The Waisman Laboratory for Brain Imaging and Behavior

University of Wisconsin SCHOOL OF MEDICINE AND PUBLIC HEALTH

White Mater Fiber Shape and Brain Network Analysis using Diffusion Tensor Imaging

Moo K. Chung Department of Biostatistics and Medical Informatics Waisman Laboratory for Brain Imaging and Behavior University of Wisconsin-Madison

Department of Brain and Cognitive Sciences Seoul National University, Korea

www.stat.wisc.edu/~mchung

Montreal Workshop November XX, 2009

Abstract

Diffusion tensor imaging offers a unique opportunity to characterize the trajectories of white matter fiber bundles non-invasively in the brain. Whole brain tractography studies routinely generate up to half million tracts per brain. The main computational challenge is to develop a unified and compact mathematical representation of large number of tracts. We have developed the cosine series representation (CSR) to parameterize, register and perform inference in a unified Hilbert space framework. CSR can be fairly useful in shape characterization of tracts but it cannot answer more complex hypothesis about brain connectivity. To address the brain connectivity problem, we built a scalable 3D graph network model and inference was performed in the ensemble of graphs for testing for over- and under-connectivity of the brain network. Computational issues and methods are illustrated with autism case studies.

Acknowledgment

Nagesh Adluru, Jee Eun Lee, Mariana Lazar Jane E. Lainhart, Andrew L. Alexander

University of Wisconsin-Madison

White matter fibers

Fibers passing through splenium of corpus callosum

White matter fiber tractography

Real brain

Tractography result 0.5-1 million tracts

parameterization

Previous studies

Very limited research on parametric model of white fiber tracts

Clayden et al. IEEETMI 2007

Cubic B-spline is used to model and match tracts. :computational nightmare

Batchelor et al. MRM 2006

Sine and cosine Fourier descriptors are used to extract global shape features for classification : inefficient representation

Cosine Series Representation of 3D Curves and Its Application to White Matter Fiber Bundles in Diffusion Tensor Imaging

Moo K. Chung, Nagesh Adluru, Jee Eun Lee, Mariana Lazar, Janet E. Lainhart and Andrew L. Alexander

accepted

Our contribution

I. More efficient Fourier descriptor (uses less number of basis than before).

2. Developed registration and averaging framework for 3D curves without numerically demanding optimization routines as in splines.

Orthonormal basis in [0,1]

 $\Delta f + \lambda f = 0$ Eigenfunctions form orthonormal basis Solve it with periodic constraint f(t+2) = f(t) $\sin(l\pi t), \cos(l\pi t)$ Additional symmetric constraint f(t) = f(-t) $\frac{\lambda_l = -l^2 \pi^2}{\psi_0 = 1, \psi_l = \sqrt{2} \cos(l\pi t)}$

Least squares estimation

Discrepancy measure between two tracts

$$\begin{aligned} \boldsymbol{\zeta}(t) &= \sum_{l=0}^{k} \boldsymbol{\zeta}_{l} \psi_{l}(t) \qquad \boldsymbol{\eta}(t) = \sum_{l=0}^{k} \boldsymbol{\eta}_{l} \psi_{l}(t) \\ \boldsymbol{\rho}(\boldsymbol{\zeta}, \boldsymbol{\eta}) &= \int_{0}^{1} \|\boldsymbol{\zeta}(t) - \boldsymbol{\eta}(t)\|^{2} dt \\ &= \int_{0}^{1} \sum_{j=1}^{3} \left[\sum_{l=0}^{k} (\zeta_{lj} - \eta_{lj}) \psi_{l}(t) \right]^{2} dt \end{aligned}$$

$$=\sum_{j=1}^{3}\sum_{l=0}^{k}(\zeta_{lj}-\eta_{lj})^{2}$$

The discrepancy measure can quantify the closeness of tract shapes

Registering tracts

$$\boldsymbol{\zeta}(t) = \sum_{\substack{l=0\\k}}^{n} \boldsymbol{\zeta}_{l} \psi_{l}(t)$$
$$\boldsymbol{\eta}(t) = \sum_{\substack{l=0\\l=0}}^{n} \boldsymbol{\eta}_{l} \psi_{l}(t)$$

optimal displacement

$$\mathbf{u}^{*}(t) = \arg\min_{u_{1}, u_{2}, u_{3}} \rho(\boldsymbol{\zeta} + \mathbf{u}, \boldsymbol{\eta})$$

Minimum is taken over the subspace spanned by the basis functions.

optimal displacement based on our discrepancy measure

$$egin{aligned} \mathbf{u}^*(t) &= rg\min_{u_1,u_2,u_3}
ho(oldsymbol{\zeta} + \mathbf{u},oldsymbol{\eta}) \ &= \sum^k (oldsymbol{\eta}_l - oldsymbol{\zeta}_l) \psi_l(t) \end{aligned}$$

In a Hilbert space, Fourier series achieve optimality with respect to L2 norm.

l=0

Defining average tract

Given m representations
$$oldsymbol{\zeta}^1, \cdots, oldsymbol{\zeta}^m$$

we define the average tract as

$$\overline{\boldsymbol{\zeta}}(t) = \arg\min_{\boldsymbol{\zeta}} \sum_{j=1}^{m} \rho(\boldsymbol{\zeta}^{j}, \boldsymbol{\zeta})$$

$$=\sum_{l=0}^{k}\overline{\zeta}_{l}\psi_{l}(t)$$

The average tract is simply given by averaging coefficients.

Average tracts across 74 subjects (42 autistic 32 control)

Average of average

Inference on representation

Compare tract shapes between the groups

 $\boldsymbol{\zeta}^1,\cdots,\boldsymbol{\zeta}^m$ $\boldsymbol{\leftarrow}$ $\boldsymbol{\eta}^1,\cdots,\boldsymbol{\eta}^n$ This is done by testing the equality of mean tracts between the groups $H_0: \overline{\boldsymbol{\zeta}} = \overline{\boldsymbol{\eta}}$ Equivalent hypothesis $H'_0: \overline{\boldsymbol{\zeta}}_1 = \overline{\boldsymbol{\eta}}_1, \cdots, \overline{\boldsymbol{\zeta}}_k = \overline{\boldsymbol{\eta}}_k$

Two cosine representations are equivalent if and only if the coefficients match

Validation via Random curve simulation

Basic model

$$(x, y, z) = (s \sin s, s \cos s, s), s \in [0, 10]$$

Add noise to the basic model

Bonferroni corrected
pvalue 0.00005

10

Diffusion smoothing

The Canadian Journal of Statistics Vol. 28, No. 2, 2000, Pages 225–240 *La revue canadienne de statistique*

Differential equation models for statistical functions¹

James O. RAMSAY

Wealth concentration in Montreal area

225

How to fix Gibbs phenomenon in Fourier expansion? Weighted Fourier Analysis, Weighted Spherical harmonic representation: Chung et al., IEEE Trans. Medical Imaging. 2007, 2008 23 citations so far

Exponentially weight the cosine series representation and make the representation converges faster

$$\begin{split} \boldsymbol{\zeta}(t) &= \sum_{l=0}^{\kappa} \boldsymbol{\zeta}_{l} \psi_{l}(t) \\ \text{add expontional weight} \\ e^{-\lambda_{l} \sigma} \\ \frac{\partial}{\partial \sigma} g &= \Delta g, \ g(t, \sigma = 0) = \boldsymbol{\zeta}(t) \end{split}$$

Weighted Fourier Analysis

WFS representation for cortical shape

Color scale: X-coordinate value

Brain & behavior correlation

Control

r=0.53 •

Autism

r=-0.85

Partial correlation of thickness & gaze duration

Autism

r=0.22

Weighted Fourier representation

$$\begin{array}{c} & & & \\ \mathsf{hickness (mm)} \end{array} \\ & & \\ \mathsf{v}_{i}(\theta,\varphi) = \sum_{l=0}^{k} \sum_{m=-l}^{l} e^{-l(l+1)\sigma} f_{lm}^{i} Y_{lm}(\theta,\varphi) \\ & \\ & \\ \mathsf{s}_{i-1,0} \\ \mathsf{s}_{i-1,0$$

Ŷ

Control

r=-0.93

Persistence on weighted Fourier represent of ID signal

IPMI 2009

Discussion: spherical embedding of cosine series representation

How to make cosine series representation invariant under translation, rotation and scaling?

$$P: v_{i} \rightarrow w_{i} = \frac{v_{i}}{\|v_{i}\|} \longrightarrow \zeta_{o}(t_{j}) = \sum_{l=0}^{\kappa} c_{lo}\psi_{l}(t_{j})$$
spherical projection
$$I \text{ just can't transform this}$$
into standard quadratic optimization problem!
$$\sum_{o=1}^{3} \left[\sum_{l=0}^{k} c_{lo}\psi_{l}(t_{j})\right]^{2} = 1$$
quadratic constraint

1.

Limitation of tract shape analysis

Difficult to do shape-to-shape correlation analysis

Can't do brain connectivity analysis

White Matter Fiber Connectivity

Diffusion tensor imaging (DTI)

Second order Runge-Kutta streamline algorithm Cosine series representation

3D graph model

10 mm resolution 405 node network

5 mm resolution 1502 node network

How did I generate the 3D network graphs ?

MATLAB demonstration

Various network complexity measures

Rubinov and Sporns, Neuroimage, 2009

Adjacency matrix

vertical or horizontal direction

Degree distribution

Brain network is known to have higher clustering coefficient, shorter path length and power law form of P(k)~k^{-x^3}

Intrinsic approach: spectral geometry

Steady-state oscillations in wave equation

Helmholtz equation $\Delta_X F = \lambda F$

L-shaped membrane

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/win03_cleve.html

Spectrum of adjacency matrix

Clustering coefficients

Watts et al. Science 1998, Milo et al Science 2002

Space of adjacency matrices

Graph isomorphism problem

Given adjacency matrices of same size A_1 and A_2 ,

$$A_2 = PA_1 P'_{\leftarrow} \text{ permutation matrix}$$

Space of random permutation matrices

Now we can construct statistics on graphs and do power computation

