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Analysis of landmarks

Midsagittal CT image displaying the variables used to assess the anthropometric 
differences of race. Variables include the following: Vocal Tract Length (VT 
Length): the curvilinear line extending from points B to C. Vocal Tract-Vertical 
(VT-Vertical): vertical distance from points A to J. Nasopharyngeal Length 
(Nasopharynx): vertical distance from points F to J. Vocal Tract-Horizontal (VT-
Horizontal): horizontal distance from points C to G. Oro-hypopharyngeal width 
(Oropharynx): points F to G. Durtschi et al., 2009. Clinical Anatomy 

Landmark based 
approaches are fairly old 
and somewhat outdated 
method but still widely 
used for identifying ROIs 
across images.



Euclidean distance matrix analysis (EDMA)

S. R. Lele and J. T. Richtsmeier. An Invariant Approach to 
Statistical Analysis of Shapes. Chapman and Hall/CRC 
Press, 1st edition, 2001.

Given k-landmarks, EDMA computes the k(k-1)/2 
pairwise inter-landmark distances.

Invariant to rotations and translations.

k x k form matrix can be used as a representation.

Two set of landmarks are compared using form difference 
matrix (FDM), where entries are the ratio of form 
matrices.



Statistic = ratio of the largest to the smallest entry

This is invariant what landmark configuration is used in the 
numerator. 

Bootstrap methods are mainly used for inference on FDM 
entries. 



Shape Analysis by Dryden and Mardia
I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. John 
Wiley and Sons, 1st edition, 1998.

k landmarks are represented as a single point in a high-
dimensional shape space

Procrustes method: It involves 
estimating translation and 
rotation in such a ways that 
the sum of squared distances 
between corresponding 
landmarks is minimized. The 
parameters of translation and 
rotations are estimated 
iteratively. 

MATLAB built-in function procrustes



Dongjun Chung, University of Wisconsin-Madison

Mandible surface alignment

Red: template
Blue: subjects



Multidi-mensional scaling (MDS)

I. Borg and J. F. Croenen. Modern Multidimensional Scaling. 
Springer, 2nd edition, 2005

For extremely large k landmarks, dimensionality reduction 
methods such as MDS and ISOMAP can be used to embed the 
points in lower dimensions.

MDS mainly use the pairwise distances between the points that 
approximate the pairwise dissimilarities of the objects.



Xn×p

X �
p×nXn×p

Matrix of p-variables of n-subjects

Compute eigenvalues

k largest eigenvalues correspond to 
the dimension to embed



ISOMAP
J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global 
geometric framework for nonlinear dimensionality reduction. 
Science, 290(5500):2319–2323, 2000

To be covered in computational methods class

http://waldron.stanford.edu/~isomap/



Small-n and large-p problem

When sample size is small while we have large number of 
parameters to estimate, the usual least squares estimation 
technique fails.

Example: In constructing the Hotellingʼs T-square statistic, we 
need to construct the covariance matrix of size p x p using 
only n samples. The constructed covariance matrix is of rank 
n. So it canʼt be inverted.

Solution 1: Perform Moore-Penrose generalized inverse of the 
rank deficient covariance matrix. 

Solution 2: Reduce dimension by performing PCA.



Cortical thickness analysis using FreeSurfer

To improve statistical power, cortical thickness needs to be 
obtained in the native MRI space rather than in the Talairach 
space (Ad-Dabʼbagh et al., 2005).

Ad-Dabʼbagh, Y., Singh, V., Robbins, S., Lerch, J., Lyttelton, 
O., Fombonne, E., Evans, A.C., 2005. Native space cortical 
thickness measurement and the absence of correlation to
cerebral volume. In: Proceedings of the 11th Annual Meeting 
of the Organization for Human Brain Mapping, Toronto

Every thickness is resampled to the average surface using 
the correspondence obtained from aligning each individual 
cortical folding pattern with the average
folding pattern on a sphere.



Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M., 1999. 
High-resolution intersubject averaging and a coordinate 
system for the cortical surface. Hum. Brain. Mapp. 8, 272-284



Cortical thickness using 3D gray matter segmentation

Chapter 6

Surface-Based
Morphometry

For cortical and subcortical structures, surface-based morphometric tech-
niques that utilizes the distance between surfaces, curvature of surfaces
have been extensively used for surface-specific shape characterization.

6.1 Cortical Thickness

Once we obtain the both outer and inner cortical surfaces of a subject,
cortical thickness, which is the distance between the outer and inner sur-
faces, is computed at each vertex of the outer surface [192]. Since different
clinical populations are expected to show different patterns of cortical thick-
ness variations, cortical thickness has been used as a quantitative index for
characterizing a clinical population [63]. Cortical thickness varies locally by
region and is likely to be influenced by aging, development and disease [24].
By analyzing how cortical thickness differs locally in a clinical population
with respect to a normal population, neuroscientists can locate the regions
of abnormal anatomical differences in the clinical population.

There are many numerical techniques for measuring the cortical
thickness. The minimum Euclidean distance method in Fischl and Dale
(2000), Laplace equation method in Jones et al. (2000), Bayesian construc-
tion in Miller et al. (2000) and the automatic linkage method in MacDonald
et al. (2000) are available. The automatic linkage method of MacDonald
et al. (2000) has been validated in Kabani et al. (2000) and used in Chung
et al. (2003) for quantifying normal cortical development.
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A fairly popular method of Jones et al. (2000) computes thickness
directly from the volumetric data by assuming the gray matter to be inside
of two conducting boundaries. The distribution of fictional charges within
the two boundaries sets up a scalar potential field Ψ, which satisfies the
Poisson equation

∆Ψ =
∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2
=

ρ

ε0
,

where ρ is the total charge within the boundaries. If we set up the two
boundaries at different potential, say at Ψ0 and Ψ1, without any enclosing
charge, we have the Laplace equation

∆Ψ = 0.

By solving the Laplace equation with the two boundary condition, we ob-
tain the potential field Ψ. Then the electric field perpendicular to the
isopotential surfaces is given by −∇Ψ. The electric field lines radiate from
one conducting surface to the other without crossing each other.

6.2 Differential Geometry

Before we introduce diffusion smoothing on an arbitrary manifold, let us
review some basic differential geometry relevant to the Laplace-Beltrami
operator and curvature. See classical books by W.M. Boothby [37], M.P.D.
Carmo [?] and E. Kreyszig [176] for an overview of differential geometry.

Suppose we have an orientable surface ∂Ω which we assume to be a
smooth twice-differentiable 2-dimensional manifold embedded in R3. Then
we have a parameterization of the surface ∂Ω:

X(u) = {x1(u), x2(u), x3(u) : u = (u1, u2) ∈ D}

where all partial derivatives of X up to the second order are continuous in a
planar domain D. The smooth map X : D → ∂Ω is called a parameterized
surface of ∂Ω if the partial derivative vectors

X1(u) =
(
u1x1, u

1x2, u
1x3

)t
and X2(u) =

(
u2x1, u

2x2, u
2x3

)t
(6.1)

form a basis for the tangent plane Tp(∂Ω) at any p = X(u) ∈ ∂Ω, i.e.
X1(u) × X2(u) &= 0 for any u ∈ D.

6.2.1 Riemannian Metric Tensors

Because X1 and X2 form a basis for the tangent plane Tp(∂Ω), any vector
dξ ∈ Tp(∂Ω) can be written as a linear combination of the basis vectors X1
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10000 volt

Brianna Schuyler, Univ. of Wisconsin-Madison



Computing field line (stream line)

d Ψ/dx

d Ψ/dy
solve for streamline



Result



Surface flattening using Laplace equation

Read textbook section 6.2 page 68-70 



Amygdala surface flattening

sink

source



Shape analysis using spherical harmonics

Why we wish to 
flatten an amygdala 
surface to a sphere?

It provides a uniform
coordinate system
to represent the 
(x,y,z) coordinates of 
the surface.

Text



Mandible surface flattening

!

!

0p

Will heat kernel smoothing on 
coordinates will flatten the surface?



! !

After heat kernel 
smoothing on 
coordinates

!

200 iterations

300 iterations
!

500 more iterations



! !
!



! !

!!

We need to flatten in such a way that area 
of triangles are more or less preserved



!!

!

Better result
but not good enough



Intrinsic approach: spectral geometry

Mark Kac, 1966. 
Can one hear the shape of a drum?
American Mathematical Monthly

This formulation can be used to obtain basis functions. 
Why you want basis functions?

Well why you even need Fourier analysis in science in 
general?

It’a all about representing data using finite number of values.



Orthonormal basis
Steady-state oscillations in wave equation

Helmholtz equation

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/win03_cleve.html

MATLAB logo

L-shaped membrane



Shape spectrum
PCA on first 50 eigenvalues

Reuter et al, 2006 Computer-Aided Design

Eigenvalues (frequency of shapes) can characterize shape



Amygdala

Eigenvalue vs. degree

Red: autism
Gray: control

Weyl’s formula

Eigenvalues can’t discriminate 
similarly shaped objects.



Generalized eigenvalue problem

Amygdala spectrum

discretization



Read Textbook Chapter 6



About your project report...  :)
Oral presentation (10%)
For the next week’s presentation, send PDF of the presentation 
to me by December 11 11:00AM. We will use only one 
computer to present.

The final project report (30%) is due December 16 1:00PM. Late 
report will be penalized by 10% per day. After 3 days, you get 0%. 

Thanks for taking this course. Please do not take the 2nd and 
3rd course from me unless you like torturing yourself.
The courses will be twice harder.



1. Go to Library at 8:00AM 

My undergraduate life at McGill

2. Take courses 
at math, physics 
& CS dept 

3. After Library close at 
10:00PM, go to the 5th floor. 
Study till 1 or 2 AM.


