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Image Registration 

•  Process of transforming one image to 
another. 

•  Transformation types: linear (rigid-
body), affine (non rigid-body), nonlinear. 

•  Type of data obtained: 3D vector fields 
(displacement, deformation). 



Affine Transformation matrix for 
(rigid, non rigid) 

•  R: 3 x 3 matrix of rotation, scaling and 
shear 

•   p’=Rp+c, where 
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Linear transform 

•  T is a linear transform if  
T(ap+bq) = aT(p)+bT(q) for all numbers a, b. 

•  Checking if the affine transform is linear. Let 
T(p)=Rp+c.  

Note  
T(ap+bq)=R(ap+bq)+c=aT(p)+bT(q)+c(1-a-b).  

This shows the affine transform is nonlinear. 



Rigid-body: 

•  Rotation and Translation only 

          Original Image                                     Shape doesn’t change 

A. Chowdhury,  
University of Georgia 



Scaling, Translation, Rotation, Reflection, 
Shear 

             Original Image                                  Non rigid-body 

Non rigid-body 



Nonlinear transform 

•  Anatomical variability is encoded in the 
nonlinear transform. 

Original image                           Target Image             Result of warping 



Talairach Template                    

http://www.talairach.org/ 

Talairach coordinate system has been widely used to describe 
the location of brain structures. 



Piecewise Affine Transform to Talairach 
•   The standard Talairach normalization approach  

•  It uses a different matrix transformation for each 
of the 12 pieces of the Talairach Grid 

•  This is a really old technique based on a single 
old subject. 

•  It provides an easy reference for comparing 
different study results.  

•  Other than for comparing results against 
literature, the Talairach approach is outdated. 



Talairach Definition 
•  Interhemispheric plane (3+ landmarks)  ⇒ 2 

rotations and 1 translation 
•   Anterior and posterior commissure (AC, PC) 
⇒ 3rd rotation, 2 translations 

•  Scale to anterior, posterior, left, right, inferior, 
superior landmarks (7 parameters) 

•  Each cerebral hemispheres divided into six 
associated blocks (interhemispheric plane, 
AC-PC axial plane, 2 coronal planes through 
AC and PC. 



MATLAB codes for reading/writing  
http://www.rotman-baycrest.on.ca/~jimmy/NIFTI/ 

Siemens DICOM sort and conversion to NIfTI format 
http://www.mathworks.com/matlabcentral/fileexchange/
22508 

MATLAB Demonstration 

NIfTI image format 

http://nifti.nimh.nih.gov/ 

NIH initiated effort for standardizing brain imaging file format. 
It supersedes the analyze and MNI file format. 



Affine vs. Nonlinear 

Non-Rigid ~ 2000 parameters Affine – 12 parameters 

Lawrence H. Staib  
Yale University 



Automated image registration (AIR) package  
(http://bishopw.loni.ucla.edu/AIR5/index.html) 
uses polynomial basis. 

SPM package  uses cosine basis. 

Advanced Normalization Tools (ANTs) 
http://picsl.upenn.edu/ANTS/ 

Nonlinear registration tools 



Deformation field obtained from AIR 

•  The deformation field d is a transformation from a 
subject image to a target image: 

•  Example: AIR 3rd degree warping 
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Deformation based 
Morphometry (DBM) 

•  It uses deformation fields obtained by 
nonlinear registration of brain images. 

Read M.K.Chung.Book… 
Chapter 7 upto section 7.2   



Visualizing Deformation 

Red: tissue expansion 
Blue: tissue shrinking 
Yellow: deformation change 



Deformation 
field 

visualization 

SPM 
result 



Displacement vector fields 

• The vector difference between the final position 
and the original position.  

• Relation between displacement and deformation 

target initial voxel position 

displacement deformation 



Displacement vector  



Visualizing Displacement Vector Field 

Displacement is easier to model statistically than deformation 



28 normal subjects, 1.5T MRI, 2 scans per subjects 

First scan: 11.5±3.1 year, second scan: 17.8 ±3.2 year 

Problem: localize the regions of anatomical change over time 



Modeling on the rate of displacement change 
Why? Easier than modeling on deformation itself. 

: Covariance matrix 

: Gaussian random vector field 



Estimating the rate of change 

•  For subject j, displacement is given by 

•  Finite difference estimation: 



• Rate of displacement 

• Sample mean 

• Sample covariance 

• Hotelling’s T-square 
(related to Mahalanobis distance)  
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Vij = µ j + Σ1/ 2eij

Group index j, subject index i 
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H0 :µ1=µ2 vs. H1 :µ1≠µ2

Hotelling’s T-square for two sample test 

n and m samples each 



• Sample means:         , 

• Sample covariance: pool the variance across groups 

• Hotelling’s T-square statistic for two samples 
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Red:  Tissue growth  p < 0.025 
Blue: Tissue loss  p < 0.025 
Yellow: Structure displacement p < 0.05 

Front 

Back 

Right Corpus Callosum 

3D SPM These 3D blobs of signal 
are meaningless without 

superimposing 
them onto MRI. 



Red:  Tissue growth 
Blue: Tissue loss 
Yellow: Structure displacement 





Red:  Tissue growth  p < 0.025 
Blue: Tissue loss  p < 0.025 
Yellow: Structure displacement p < 0.05 

Front 

Back 

Right Corpus Callosum 

3D SPM 





How it should be done correctly? To reduce the 
total amount of registration errors, 1st scans 
should be registered to the 2nd scans first. 

Registration  
procedures in 
Chung et al. 
(2001) 
is not optimal. 

Limitation of 
Chung et al., 2001 



Tensor-based Morphometry (TBM) 

•  It uses higher order spatial derivatives of 
deformation fields to construct morphological 
tensor maps. 

•  From these tensor maps, 3D statistical 
parametric maps (SPM) are created to 
quantify the variations in the higher order 
change of deformation. 



Determinant 
out of this 



Jacobian determinant (JD) 
•  The Jacobian determinant J of the deformation field is 

mainly used to detect volumetric changes.  

Voxel position  

Deformation  

Jacobian determinant 
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Interpretation of Jacobian determinant (JD) 

•  JD measures the volume of the 
deformed unit-cube after registration. 

•  In images, a voxel can be considered a 
unit-cube 

•  JD measures how voxel volume 
changes after registration.  



JD Computation 

•  1D example: 

•  2D example: 
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Is it possible to perform TBM using 
only an affine registration? 

•  For affine transformation p’=Ap+B, the Jacobian 
determinant is det(A) at every vovels. 

•  Every voxel will have the same scalar value. 

•  Affine registration based TBM only detect global size 
difference. 

TBM requires really good high order registration 
technique to work properly. 



Statistically significant regions of local volume change 
JD > 1 volume increase, JD < 1 volume decrease over time 

My first paper  Chung et al. 1999. HBM meeting 



Generalization of Jacobian determinant in arbitrary manifold 
= determinant of Riemannian metric tensors 
= local volume (surface area) expansion 

Surface-based Jacobian determinant 



Distributional assumption: Normality of JD 
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Note that we modeled displacement U to be a Gaussian 
random field. Any linear operation (derivative) on a 
Gaussian random field is again Gaussian. So J is 
approximately a Gaussian random field.  



Lognormal distribution 

•  Random variable X is log-normally distributed if 
log X is normally distributed N(mu, sigma^2) 

•  For E log X=0, the shape of density: 

Some lognormal distribution 
looks normal so how do we 
check if data follows 
normal or lognormal? 



Properties of JD 

•  J(p) >0 for one-to-one mapping 
•  J(p) > 1 volume increase; J(p) <1 volume decrease 
• Due to symmetry, the statistical distribution of J(p) 
and 1/J(p) should be identical.  

Mapping d(p) 
JD J(p) 

Inverse mapping 
JD 1/J(p) 
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d−1(p)
Subject 1 Subject 2 



•  Domain 

•  If J(p)=1, 

•  Symmetry:        

•   These 3 properties show that JD can be 
modeled as lognormal distribution.   
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−∞ < logJ(p) <∞
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logJ(p) = 0
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log J−1(p)[ ] = −logJ(p)

Distributional assumption: Lognormality of JD 



Testing normality of data 

•  How do we check if JD is normal or lognormal 
emphatically? 

•  Quantile-quantile (QQ) plot can be used. For 
given probability p, the p-th quantile of random 
variable X is the point q that satisfies             

                        P(X < q) = p.  



QQ-plot compares quantiles 

x y 

x 

y 



Normal probability plot showing asymmetric distribution 

Longer tail 



Checking normality across subjects on cortical measure 

Chung et al., 2003 NeuroImage 



Fisher’s 
Z transform 
on correlation 

Tricks for increasing 
normality of data 



Increasing normality in heat kernel smoothing 

Thickness 50 iterations  100 iterations  

QQ-plot QQ-plot QQ-plot 


