Neuroimage Processing

Instructor: Moo K. Chung
mkhung@wisc.edu

Lecture 06-07.

Diffusion Tensor Imaging

October 16, 2009



White matter fibers

www.vh.org

A WN -
[ T T R B |

Olfactory bulb
Olfactory tract
Olfactory trigone
Medial olfactory stria
Lateral olfactory stria
Optic nerve



Diffusion Tensor
Imaging
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DTI data D =(d,;)

6 diffusion coefficient matrix D_xx, D_xy, D _xz, D yy, D yz, D zz

Diffusion coefficient measures the diffusion of water molecules.
*The principal eigenvector = direction of water molecules.
*This gives indirect information about white matter fibers.



Fractional Anisotropy (FA) map

Read Alexander.2007..... :review paper

You need to know the difference between FA-map
and MD-map.



Tractography

— T [ | Figure 2. Schematic diagram of the Iinearfline-propagation
EIUR_4 ,.;s'- approach. Double-headed arrows indicate fiber orientations
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[ p oo pey & | | discrete number field (A), the coordinate of the seed pixel is{1,

LR IN O ’ 1.1 it is judged that the vector is pointing to {1, 2} and {1, 0},
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 (B), the seed point s {1.50, 1.50} and a line, instead of a Series

of pixels, is propagated. (C) shows an example of the

. interpolation approach to perform nonlinear line propagation.
N o \ \ \ Large arrows indicate the vector of the largest principal axis.
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‘;-1} . “S vecorsis calculated. Inthis example, the vector orientations of

two nearest pivels are averaged as the line is propagated

Mori and van Zijl NMR
Biomed 2002

Camino software package

http:/len.wikipedia.org/wiki/
Camino_(diffusion_MRI_toolkit)

o ‘
Second order Runge-Kutta algorithm with TEND (Lazar et al., HBM 2003).
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Figure 1. Schematic diagram of the white matter structure and its relationship with the information
provided by DTI-based images, such as anisotropy maps (A), have sufficient resolution to segment
white and gray matter. By incorporating DTl orientation information, white matter can be parcellated
into various tracts using a color-coded map (B) or a vector map (C). The image resolution is sufficient to
delineate large white matter tracts, which mostly consist of neuroglia and axons that are largely
running parallel. A pixel thus contains bundles of axons and neuroglial cells (D). Note that the size of a
pixel (C) is on the order of mm but that the size of the cells (D) is on the order of um. The axon is filled
with neuronal filaments (E) running along its longitudinal axis, which may contribute in superimposing
anisotropy on the direction of water diffusion. In the color-coded map, red indicates fibers running
along the right-left direction, green inferior-superior, and blue anterior-posterior (perpendicular to
the plane). The figures (D) and (E) were reproduced from Carpenter*® and Alberts et al.** respectively
with permission

Mori and van Zijl NMR
Biomed 2002




Diffusion Tensor Imaging

White matter fiber tractography




rincipal eigenvectors
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Ellipsoid
N
W

Eurographics , IEEE TCVG Symposium on Visualization 2004 Scientific Computing and Imaging Institute

Figure 11: 3-D region of DT-MRI dataset of brain visualized
with ellipsoids (top) and superquadrics (bottom).



Diffusion tensor imaging (DTI) is a new technique that provides the direc-
tional information of water diffusion in the white matter of the brain. The
directional information is usually represented as a symmetric positive defi-
nite 3 x 3 matrix D = (d;;) which is usually termed as the diffusion tensor
or diffusion coefficients. The diffusion tensors are usually normalized by
the transpose, i.e. D/trD. This normalization guarantees that the sum of
eigenvalues of D to be 1.

The eigenvectors and eigenvalues are obtained by solving
DV = \V.

Consider a vector field V which is the principal eigenvector of D with
|V|| = 1 with the corresponding principal eigenvalue A\. Now suppose that
we would like to smooth signals along the vector fields AV such that we
smooth more along the larger vector fields. Suppose that the stream line
or flow x = 9(t) corresponding to the vector field is given by

di

This ordinary differential equation gives a family of integral curves whose
tangent vector is AV (Betounes, 1998).
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For given vector fields there exists a family of curves
whose tangent is given by the vector fields.
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Streamline based tractography
second order Runge-Kutta algorithm (Lazar et al., HBM. 2003).
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MATLAB demonstration



Parametric model of white fiber tracts

Clayden et al. IEEE TMI 2007

Cubic B-spline is used to model and match tracts.
:computational nightmare

Batchelor et al. MRM 2006

Sine and cosine Fourier descriptors are used to extract
global shape features for classification

: inefficient representation



Main contribution of Chung et al. 2010

1. More efficient Fourier descriptor
(uses less number of basis than before).

2. Developed registration and averaging
framework for 3D curves without numerically
demanding optimization routines as in splines.



Orthonormal basis in [0,1]
Eigenfunctions form orthonormal basis

Sine and cosine basis

Cosine basis: more compact representation

l22

\/COS(l’mﬁ)

Fourier analysis in [0,1]
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Least squares estimation

X, y, z coordinate vector —s f(p;) Zﬁj% (i)
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MATLAB demonstration
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Tract alignment

Average of 5 tracts

optimal displacement

. w(t) —arg min p(¢+u,m)

ul,u2,u3

Minimum is taken over the subspace
spanned by the basis functions.




Define average tract

Given m cosine series representations C R C

we define the average tract as

(t)

The average tract is simply given by averaging coefficients.




FORAMEN OF MONRO

MIDDLE COMMISSURE
CHOROID PLEXUS OF
THIRD VENTRICLE
TAENIA THALAMI

HABENULAR
COMMISSURE

POSTERIOR
COMMISSURE

LAMINA TERMINALIS ; 3 A W : PINEAL BODY
: QUADRIGEMINAL

SUP. MEDULLARY
VELUM

FOURTH

VENTRICLE

Average tracts passing
through the splenium of

the corpus callosum




Average tracts across
/4 subjects. Averaged
within each subject
(42 autistic 32 control)




Chung et a_I_., 2009, EMBC
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Fiber concentration analysis using

cosine series representation

COMMISSURE

A X tracts passing
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é
e~ ‘ |
| i average
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| tstat
7_ (p-value) b
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= t-test

42 autistic & 32 control



Inference on representation

Compare tract shapes between the groups
1 1 n
C 7 ) ) ) G ) ?7 7 [ ] [ ] [ ] 7 ?7

This is done by testing the
equality of mean tracts between

the groups

Hy:¢( =7

$ Equivalent hypothesis

H63E1:ﬁ1>‘”>zk:ﬁk

Two cosine representations are equivalent if and only if the coefficients match
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Validation via Random Simulation

We have performed a simulation study to (‘ig
proposed framework can detect small tract 3 R
between two collection of similarly shaped
the parametric curve

(18) (x,y,2) = (ssins,scoss,s),s € [0,10]

as a basis for simulation, we have generated two groups of
random curves. This gives a shape of a spiral with increasing
radius along the z-axis. The first group consists of 20 curves
generated by

(ZC, Y, Z) — (S SiIl(S + 61)7 SCOS(S + 62)7 N 63)7

where e1,es,e3 ~ N(0,1). The second group consists of 20
curves generated by

(x,y,2) = ((s+eq)sin(s+0.1), (s+e5) cos(s—0.1),s —0.1),

where ey, e5 ~ N(0,0.22). The non-additive noise is given



MATLAB demonstration



D Tl-based brain
connectivity analysis



Diffusion tensor ""ﬂ : " Sécéjnd order Runge-Kutta
imaging (DTI s e streamline algorithm representation




5 mm resolution 1502 node network



Building DTl-based brain network graph




Scalable iterative structural
network construction

Scalable 3D graph




MATLAB demonstration



Brain connectivity analysis



Predicting human resting-state functional connectivity
from structural connectivity

C. ). Honey®, O. Sporns™', L. Cammoun®, X. Gigandet®, J. P. Thiran®, R. Meuli®, and P. Hagmann™“

*Oepantment of Psychological and Bran Sclences, Indana University, Blcomington, IN £7405; *Signal Processing Laboratory 5, Ecole Polytechnique Fédérale de
Lausanne, CH-1011 Lausanne, Saitzerang; and “Department of Radoiogy, University Hospital Center and Universty of Lausanne, CH- 1011 Lausanne, Saitzeriand
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NeuroIlmage

www.elseviercom/locate/ynimg
Neurolmage 32 (2006) 228 - 237

Partial correlation for functional brain interactiyvity investigation in
functional MRI

Guillaume Marrelec,™™** Alexandre Krainik,*® Hugues Duffau,**f Mélanie Pélégrini-Issac,™”
Stéphane Lehéricy,® Julien Doyon,*™¢ and Habib Benali®*®



Originally Keith J. Worsley’s idea

Neurolmage

FISEVIER

www elsevier comlocate/ynimg
Neurolmage 31 (2006) 993 - 1003
Mapping andtomical correlations across cerebral cortex

(MACACY) using cortical thickness from MRI

Jason P. Lerch.* Keith Worsley.” W. Philip Shaw.” Deanna K. Greenstein.”
Rhoshel K. Lenroot.” Jay Giedd.” and Alan C. Evans™”

MACACC methods—comrelations
Cortical cross-comrelations are obtained using simple lincar

correlations whose strength 1s measured using Pearson’s r. Cross correlation on

17 - vy cortical thickness
1)



Seminar on October 23, 2009

Peter Kim

Department of Mathematics and Statistics
University of Guelph, Canada

B.A. University of Toronto
M.A. University of Southern California
Ph.D. University of California San Diego

Research field: Statistical geometry and applications

Wishart Mixtures and Diffusion Tensor Imaging

The Wishart distribution is a natural distribution on the space of positive
definite symmetric matrices. It is derived from the sample covariance matrix
coming from a multivariate normal distribution. Combining several Wishart
distributions with different covariance parameters therefore leads to Wishart
mixtures which has practical relevance to Diffusion Tensor Imaging which is a
modern in vivo brain imaging technique that tracts the whole brain white
matter fibers. Statistical estimation of the mixing distribution will be
presented.



k

Gi(t) = Z clitr + €;(t)

[=0

When do we stop the expansion?
Why did we choose degree 197



first presented in [10] [11]. Although increasing the degree
of the representation increases the goodness-of-fit, it also
increases the number of estimated coefficients linearly. So it
is necessary to stop the series expansion at the degree where
the goodness-of-fit and the number of coefficients balance
out.

Assuming up to the (k—1)-degree representation is proper
in (9), we determine if adding the k-degree term is statisti-
cally significant by testing

H() . Cks = 0.

Let the k-th degree sum of squared errors (SSE) for the i-th
coordinate be

n

k
SSE. = Z [Cz(tg) — Zgﬁwl(tj)]Qa
[=0

i=1



60

optimal degree = 13.94 + 7.02 blue (x-coordinate)

upper 80 percentile = 19 red (y-coordinate)
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Figure 3. As the degree k increases, SSE decreases until it
flattens out. So it is reasonable to stop the series expansion
when the decrease in SSE is no longer significant. Under Hy,
the test statistic F' follows

SSEr_1 — SSEj

F =
SSEx_1/(n —k —2)

~ Fl,'n—k'—Qa

the F'-distribution with 1 and n — k — 2 degrees of freedom.
We compute the F' statistic at each degree and stop increas-
ing the degree of expansion if the corresponding p-value first
becomes bigger than the pre-specified significance v = 0.01.
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Is the optimal degree dependent
on the length of a tract”? No!

180
160 & -
ol o, . * Yo + -
120 ettt . . i
+ - ’.. “:"* : -

100l ;gﬁ;’;f?;g::;:. i . ¥ ]

T 113 T ISSPNE O IRIPS -
R T il N S B

i: z e ;g,:§§ ..+ .| It's more related to bending
o ‘:z ! !! ;ppig‘s:;s‘.‘;.: . . ] and curvature, which in

0 3 ’:‘0 . * + . .
40} ;! ' ;,‘;:33: ; *«, «..J turnis related to spatial

‘ | e TR T frequency of tract shape.

200 10 20 30 40 =0

length of tract (vertical axis) vs. optimal degree (horizontal axis)



