Neuroimage Processing

Instructor: Moo K. Chung
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Lecture 04-05.

Image Smoothing

September 25, 2009



Gaussian Kernel Smoothing

We will study basic properties of
Gaussian kernel smoothing and
numerical implementation issues.



Kernel Smoothing, Convolution, Linear Filter

=/K(t,s)X s) ds

output kernel input

Y(t) = K X(t /Kt—s (s) ds.
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2D example
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Motivation for image smoothing: Improve
performance of PDE based segmentation - level set

No image filtering
= More manual correction ®




Malladi & Sethian’s Min/Max Flow
This is basically a PDE smoother.

Original

Thomas Hoffmann

Gaussian



Shape of kernel

Unimodal, Symmetric (Isotropic), normalized

1D and 2D Gaussian kernel
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Quiz: The cross section of 2D Gaussian kernel ?



Brownian motion. B

1D Brownian motion
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Brownian motion simulation ---> Gaussian kernel

# random walk hitting a target voxel

Probability

100 120 140 160 180 200 220
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We will investigate the linear system

Y@:/K@@m@@, (4.1)

where K is called the kernel of the integral. Given the input signal X,
Y represents the smoothed signal. We assume the kernel to be unimodal,
isotropic and normalized as

/K@ﬁ:L

When the kernel K is isotropic, it has radial symmetry and should be
invariant under rotation. So it has the form

K(t,s) = f(lIt —sl)

for some function f. Since the kernel only depends on the difference of the
arguments, with the abuse of notation, we can simply write K as

K(t,s) = K(t —s).



Then (4.1) can be written as
Y () = K + X(t) = /K(t _ $)X(s) ds

and it is called kernel smoothing. We may further assume K to be depen-
dent on some parameter o such that

lim K (t,s;0) — 0(t — s),

o—0

the Dirac-delta function (Dirac, P.A.M., 1958). The Dirac-delta function

is a special case of generalized functions or distributions ( Gelfand and
Shilov, 1964; Stakgold, 1997). It is usually defined as §(¢) = 0 if ¢t # 0 and

[ 6(t) dt = 1. This is also referred to as the impulse function in engineering
literature.

An example of 1D kernel is an isotropic Gaussian kernel defined as




Let’s scale the kernel by the parameter o:

This is the density function of the normal distribution with mean 0 and

variance o2. The bandwidth o defines the spread of kernel. The nD

isotropic Gaussian kernel is defined as the product of n 1D kernel. Let

x = (x1, - ,xn) € R™ Then the nD kernel is given by
Ko(x) = Ko(x1)Ko(22) - Ko(2n)
1 (x%+x§+---+xi)
— exp
(2m)n/20m 202

(Gaussian kernel smoothing is probably the most widely used image smooth-
ing technique in brain imaging. The numerical implementation utilizes the
idea of kernel factorization.



4.3 Diffusion Equation

We show that the Gaussian kernel estimator K, * X is the unique solution
to a diffusion equation

0

6’_{ = f, f(x,t=0)= X(x)
with ¢t = 02 /2. With respect to the spherical coordinates, the n-dimensional
Gaussian kernel is given by

o [ 5]
(2m)n/20™ P LT op2)

Ky(r) =

where r = """ | x7. The Laplacian A in both the Cartesian and spherical
coordinates at the fixed radius r are given by

AP 1D
B or2  Or? r  Or

1=1 ¢



The algebraic manipulation can show that
1 0K,

o Oo

— AK,,. (4.3)

Although (4.3) does not look like a diffusion equation, it is if we change the
variables to t = 0?/2. Using the differential dt = odo, (4.3) transforms to
0K,
ot
By applying the convolution on both sides, we get
0K, * X (x)
ot

Hence K, * X (x) is a solution of an isotropic heat equation

of
o = A (4.4)

= AK,.

= A K, x X(x)].



with initial condition f(x,0) = X (x). Note that lim;_g K, * X () = X (z)
so the solution satisfies the initial condition. So if we diffuse observation
Y (x) for time duration of ¢t = ¢2/2. it should be equivalent to kernel
smoothing with bandwidth o. This is a remarkable result that has many
important ramifications in various imaging applications. The solution to
(4.4) is identical to Gaussian kernel smoothing estimate so it should inherit
all the statistical properties of kernel smoothing estimator and vice versa.



2D simulation results
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4.1 Kernel Smoothing Estimator

(Given noise observation
X (1) = p(t) + €(t),

where € is a mean zero random field and p is unknown signal. Then we
estimate p via kernel smoothing

n(t) = Kg x X(t) :/KH(t—s)X(S) ds

Some asymptotic properties are

H—0

lim pu(t) = /5(15 —5)X (s) ds = X (t)

and
lim u(t) = 0.

H—oco



Also
Eu(t) = Kg * u(t) — p(t) as H — 0

The kernel estimator becomes more unbiased as H — 0. Assuming |u| < oo,

Eu(t) < /KH(t) sup p(t) dt < sup pu(t).
Similarly we can bound from below so that
inf pu(t) < Epn(t) < sup p(l).

Another interesting property is

/KH*X(t)dt _ /t/SKH(t—S)X(s> ds dt

/ X(s) ds.
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Prediction
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Optimal bandwidth
choose sigma that minimizes the
integrated squared error

Many technique uses some sort of cross-validation



4.4 Iterated Kernel Smoothing

When we diffuse measurement Y for duration t = 0?/2, we obtain K, Y.
Now we diffuse K, *Y for additional ¢t = 02/2 and get K, * (K, xY). The

total diffusion duration is 0. It should be equivalent to kernel smoothing
with bandwidth /20, i.e.

KU*KU*Y:K\@U*Y.
Define m iterative convolutions as

K((,m):KU*---*KU.

7

~

m times

From the inductive argument, we then have K(S—m) = K /mo- An alternate

proof can be obtained by noting that K((,m) is the density of the sum of
m independent and identically distributed Gaussian random variables with
mean zero and variance o2. Based on this identity, kernel smoothing with
larger bandwidth \/mo can be decomposed into m iterated kernel smooth-
ing with smaller bandwidth o. The iterated kernel smoothing approach has
been used to smooth data in irregular grid system such as cortical surfaces.



Simulating Gaussian random field

N(0, 0.4*2) Gaussian white noise
lterative kernel smoothing with sigma=0.4 and 1,4, 9 iterations



MATLAB Demonstration



Smoothing volume data
was easy. How about
smoothing surface data”



Final surface extraction result

Inner surface Outer surface



Polygonal mesh data structure
Basis of most surface rendering
tools for 3D computer games:

3D Max Studio, Maya




Data structure for polygonal mesh

Coordinates for subject 1

Vertex 1 2 3 4 5 6 e 40962
X 57.1876 41.0450 -53.1115 -38.1080 1.8440 -0.2458

y 21.6388 -56.3448 29.8912 -65.5394 22.9715 9.4176

z 2.9667 21.1399 -5.5088 23.6724 21.5146 16.9014

Thickness 5.0 4.9 3.0 2.1 3.4 4.5

Coordinates for subject 2

Vertex 1 2 3 4 5 6 e 40962
X 53.4240 41.0552 -61.4073 -43.2099 1.6256 -3.9101

y 22.5535 -56.7731 20.9221 -65.9948 22.7979 29.7043

z 7.1866 22.4754 -0.1368 21.3962 20.2838 -10.8959

Thickness 5.5 3.4 2.7 5.1 3.7 4.5

Corresponding vertices have approximate anatomical homology.



Cortical thickness measurements
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where 0 1s the mean thickness and € 1s a zero mean Gaussian random field.



Flattened map
Spherical projection

(visualization only)
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Noisy thickness measures from triangle mesh




Flat map of cortical thickness
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Why do we smooth images before statistical analysis?
1. To increase the signal-to-noise ratio (SNR).

2. Random field based multiple comparison correction
requires very smooth Gaussian random field
assumption.

Why Gaussian kernel smoothing?
1. It is a standard technique in imaging.
2. Computationally fast.

3. Computationally easy to implement.

How to perform “kernel smoothing” on anatomical
boundary?



Difficulty of performing smoothing along boundary

Due to curved geometry, the shortest distance between
two points is not a straight line. So we may incorrectly assign
less weights to the closer measurements.

; (N (

Improper kernel weighting Proper kernel weighting



Heat kernel smoothing

Gaussian kernel smoothing is a special case of heat
kernel smoothing. It is the solution of the isotropic
diffusion equation.

K, *Y(p) = | K;(p,q)Y (q) du(q)

Estimate heat kernel K and simply perform integral
convolution on surface.



Iterated heat kernel identity

Theorem 4 Heat kernel smoothing with large bandwidth can be decomposed into
multiple kernel smoothing with smaller bandwidth via

KC(,M «f =Kox- o x Koxf =K g *f.
k times

Example.

Single Gaussian kernel smoothing with the
bandwidth of 10 mm FWHM.

= 100 repeated applications of Guassian kernel
smoothing with the bandwidth of 1 mm FWHM.



1st order approximation of heat kernel

. d?(p.gi)
iyt _ e}"xl) o <2
Ug(]), Y ) — m [ 26:122(]}%' )
>oiloexp [ — o]

Heat kernel smoothing is performed iteratively with
smaller FWHM.

Algorithm 1

Foriv=1ton do

Find a set of neighboring vertices N(q;) of q;.

Compute the weighted average and store Z(q;) <— W, = Y (q;).
End.

Update Y — Z.

Repeat this procedures k-times.
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Heat kernel smoothing on cortical thickness



MATLAB Demonstration
of Heat Kernel Smoothing



Full width at half maximum (FWHM)

f(x) ,
FWHM
fnmx T /\
112 * fnax == / \‘\
/1 1\
I |




ft) = \/12_7T€t2/2.

Let’s scale the kernel by the parameter o:

K, (t) = lf(i).

o o

This is the density function of the normal distribution with mean 0 and
variance o2. The bandwidth o defines the spread of kernel. The full width
at the half maximum (FWHM) of Gaussian kernel K, is given by 2v/21n 20.
This has been widely used unit for measuring smoothness with respect to
kernel smoothing in brain imaging.



Motivation for spatially adaptive
anisotropic smoothing

Need for smoothing data while
preserving boundary information



The Canadian Journal of Statistics 225
Vol. 28, No. 2, 2000, Pages 225-240
La revue canadienne de statistique

Differential equation models
for statistical functions!

238 RAMSAY Vol. 28, No. 2

James O. RAMSAY

Initial Distribution of Wealth x10°

Wealth concentration
In Montreal area
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FIGURE 10: The distribution of wealth on the Island of Montréal. This defines the initial state g(z, 0) of
the system described by partial differential equation (15) and boundary condition (16).



Wealth at Time 1e-05 x 10*
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FIGURE 11: The distribution of wealth at time 0.00001.
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Smoothing while preserving edge

NOISY IMAGE DENOISED IMAGE

Figure 10. Image denoising using Beltrami tlow [Kimmel et al].



Diffusion tensor imaging (DTI): Smoothing along vector or tensor fields
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Arrows = Principal eigenvectors - o _
Colors = Principal eigenvalues of diffusion coefficient matrix.



Smoothing along
tensor fields

Principal curvature direction
Meyer et al.




Two main approaches

*Anisotropic kernel smoothing

*Anisotropic diffusion equation



Kernel smoothing

*|sotropic kernel smoothing: weighted
averaging where weights are isotropic

*Anisotropic kernel smoothing: weights
are not isotropic. It contains directional
information



Anisotropic kernel

The isotropic kernel under linear transform x — Hx changes the
shape of the kernel to an anisotropic kernel

1
- detH

Kp(t) K(H 'x).

det H is the Jacobian determinant of the transformation that normalize the
kernel. Note that this is the density of n-dimensional multivariate normal
with the covariance matrix HH', i.e. N(0, HH’). The matrix H is called
the bandwidth matriz and it measures the amount of smoothing. It can
be shown that Ky is the Dirac-delta function when all the eigenvalues
A1, , A\, of H go to zero, i.e.

Al,--l-lgln—m Kg(x) = 6(x).

From now on we H — 0O if all A\; — 0 and H — oo if all \; — oo.



Kernel weights

Isotropic kernel Anisotropic kernel



Diffusion Tensor
Imaging

| 1 [ —(x=x,)"D " (x=x,)
p(x|x,,t)= expf ———MMM———=

\ 41

Diffusion Tensor Eigenvalues

Matrix of 3
eigenvectors




Please read following two
papers for lecture 5

Alexander.2007..... . review paper

Chung.2010..... : method paper dealing with
tract shape analysis



Application to DTI data D =(d;)

6 diffusion coefficient matrix D_xx, D_xy, D _xz, D yy, D yz, D zz

Diffusion coefficient measures the diffusion of water molecules.
*The principal eigenvector = direction of water molecules.
*This gives indirect information about white matter fibers.



Tractog raphy

Figure 2. Schematic diagram of the linear line-propagation
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 (B), the seed point s {1.50, 1.50} and a line, instead of a Series
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Mori and van Zijl NMR
Biomed 2002

Camino software package

Second order Runge-Kutta algorithm with TEND (Lazar et al., HBM 2003).



Camino DTI toolbox

http://en.wikipedia.org/wiki/
Camino_(diffusion_MRI_toolkit)
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Figure 1. Schematic diagram of the white matter structure and its relationship with the information
provided by DTI-based images, such as anisotropy maps (A), have sufficient resolution to segment
white and gray matter. By incorporating DTl orientation information, white matter can be parcellated
into various tracts using a color-coded map (B) or a vector map (C). The image resolution is sufficient to
delineate large white matter tracts, which mostly consist of neuroglia and axons that are largely
running parallel. A pixel thus contains bundles of axons and neuroglial cells (D). Note that the size of a
pixel (C) is on the order of mm but that the size of the cells (D) is on the order of um. The axon is filled
with neuronal filaments (E) running along its longitudinal axis, which may contribute in superimposing
anisotropy on the direction of water diffusion. In the color-coded map, red indicates fibers running
along the right-left direction, green inferior-superior, and blue anterior-posterior (perpendicular to
the plane). The figures (D) and (E) were reproduced from Carpenter*® and Alberts et al.** respectively
with permission

Mori and van Zijl NMR
Biomed 2002




White matter fibers

www.vh.org
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Olfactory bulb
Olfactory tract
Olfactory trigone
Medial olfactory stria
Lateral olfactory stria
Optic nerve
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For given vector fields there exists a family of curves
whose tangent is given by the vector fields.
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Principal eigenvalues
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Diffusion tensor imaging (DTI) is a new technique that provides the direc-
tional information of water diffusion in the white matter of the brain. The
directional information is usually represented as a symmetric positive defi-
nite 3 x 3 matrix D = (d;;) which is usually termed as the diffusion tensor
or diffusion coefficients. The diffusion tensors are usually normalized by
the transpose, i.e. D/trD. This normalization guarantees that the sum of
eigenvalues of D to be 1.

The eigenvectors and eigenvalues are obtained by solving
DV = )\V.,

Consider a vector field V which is the principal eigenvector of D with
| V]| = 1 with the corresponding principal eigenvalue A\. Now suppose that
we would like to smooth signals along the vector fields AV such that we
smooth more along the larger vector fields. Suppose that the stream line
or flow x = 1)(t) corresponding to the vector field is given by

dip

= (AV) o 9(1).

This ordinary differential equation gives a family of integral curves whose
tangent vector is AV (Betounes, 1998).
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Smooth along principal eigenvectors
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The stream line v (t) corresponding to the vector
field is given by

W V.

dt
This ordinary differential equation gives a family
of curves whose tangent vector is V. The line
element is

dip? = Vdas + - - V.2da2.

So gi; = V;=4;;. Riemannian metric tensor

Choose HH' = 2tG,G = (g;;). In this way
we smooth more along the larger metric distance.




Relation to Diffusion equation
Let HH' = 2tD. Then Ky (x) = K\/EDL,-Q(X). Call this kernel K;(x)

exp(—x'D~1x/4t)
(4nt)"/2(det D)1/2

Ki(x) =

f(x,t) = K+ g(x),t € RT

Theorem: f(x,t) = K; * g(x) is a unique solution of

of

— =V - - (DV 2

= =V (DVf) 2)
with initial condition f(x.0) = g(x). In vector-free notation,

3, 02

A Sy e

ot (2, Ox0x;
1, )=

(3)

The natural Riemmanian metric tensor associated with diffusion process
is G = D (De Lara, Annals of Probability, 1995).



Isotropic



Estimated anisotropic weights

*Due to image noise, images are not smooth enough.
*Isotropic smoothing on the Cholesky factors of DTl is needed to
improve the performance.



Smooth Cholesky Factors
and reconstruct diffusion coefficients
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Smoothing vector fields: spline approach
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Div-curl spline smoothing
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Vector fields are decomposed into rotational (curl) and
irrotational components (div).



Helmholtz theorem

The motivation for the vector spline can be seen from the decomposition
of 2D vector field f. We assume that field f vanishes at infinity. f can be
decomposed into divergent free (solenoidal) and rotation free (irrotational) parts
using the Helmholtz decomposition:

f — f.sol + fi-r"/‘y

where f,,; = V x ¥ and f;,., = V¢ for vector potential field 1/ and stream

function ¢. Note that V- fioy = V- (V x¢) =0and V x fi,.,. =V x (V¢) = 0.




At each control point p; € R? we have the principal eigenvector V(p;).
Then we have the following stochastic model

Vip;) = f(pj) +¢

where €, is assumed to be a Gaussian white noise vector and f is the mean
vector-valued function. Then we estimate the mean function f by minimizing

SV = F)IE A [ al 9T DIE +BITT x )] dp
j=1 :

This is called the second order vector spline. The first order vector spline has
no gradient operator in the integral.

Div-curl spline is not efficient computationally.
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The concentration of water molecules follows
the following anisotropic diffusion equation:

oC ,

We can use this idea for edge preserving image smoothing
by taking D to be related to image gradient such that
D obtains high value (more smoothing) in the interior and
low value (less smoothing) near edges

(Perona and malik, 1986).



Image gradient change
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Image gradient change
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Anisotropic smoothing
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Diffusion coefficients can be used
in solving either diffusion equation
or kernel smoothing
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Obtaining edge information: Laplacian




Obtaining edge information: sample variance
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Anisotropic diffusion equation

ORIGINAL IMAGE DESIRED RESULT GAUSSIAN BLUR RESULT

Original anisotropic diffusion Gaussian smoothing

Michael Bronstein



Smoothing data manifold

ORIGINAL IMAGE

Figure 9. Beltrami flow application on Eugenio Beltrami’s portrait [Kimmel et al].

Weights for smoothing is determined by the
geodesic distance between two neighboring
sample points. Metric tensor approach.



Riemannian metric tensor formulation

|sotropic smoothing in
image intensity surface

Anisotropic smoothing in
Image space



MATLAB demonstration



Lecture 6 Topics

Diffusion Tensor Image Analysis



Course Project
(50% of your final grade)

By October 23, please send me 1 page abstract

of what you will do research and write about.
(approximate length 15 pages without figures, tables, references)

The project topic has to be consulted with me but
If you already have some brain images, you can
use them. However, methods you will use in the
project must be related to course materials.



Possible Course Project

1. Install some software such as Camino or
FreeSurfer and do image processing, and do
some simple data analysis. You have to install it
iIn Mac Pro we are currently purchasing.

2. Using the in-class data set, do processing and
analysis with technique not covered in class

3. Get data set from other professors and follow
some of procedures covered in class and do
processing and analysis.



