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What is GLM 
The general linear model (GLM) is a very flexible and 
general statistical framework encompassing a wide 
variety of fixed effect models such as the multiple 
regressions, the analysis of variance (ANOVA), the 
multivariate analysis of variance (MANOVA), the analysis 
of covariance (ANCOVA) and the multivariate analysis of 
covariance (MANCOVA) 

The parameters of the model are mainly estimated by the 
least squares estimation and  has been implemented in 
many statistical packages such as R or Splus and brain 
imaging packages such as SPM and fMRI-STAT. 
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Inference 



Estimation 



Application: 
GLM on cortical thickness 
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Deformable surface algorithm McDonalds et al. (2001) NeuroImage 

Multiscale triangle subdivision at each 
iteration increases the complexity of 

anatomical boundary 



Cortical Surface 
Polygonal mesh 

Mesh resolution 3mm 

82,190 triangles 

40,962 vertices 



Outer and inner cortical surfaces 



GLM on thickness 





MATLAB demonstration 



Segmentation 
• Segmentation is the partition of a digital 
image into multiple regions according to 
some criterion. 

C. Phillips 



Image Segmentation Methods 

• Intensity histogram based approach 
Gaussian mixture modeling  probabilistic 
output 

• Shape based approach (PDE based) 
Active contour, deformable surface 
algorithms, level set   deterministic  
output 



Example: CT image 
segmentation 



Example: MRI  



Application of deterministic 
segmentation 
 ROI volumetry 

•  This is a traditional approach  

•  ROI volumetry measures volume of a 
segmented region region of interest (ROI).  



Example: Hippocampal volumetry 

1.  Manually or automatically segment hippocampus 
2.  Count the number of masked voxels 
3.  #number of voxel x volume of voxel 



Probabilistic segmentation 

See Mietchen & Gaser, 2009 



Image intensity histogram 

CSF   gray matter   white matter 



Bayesian framework 

•  Once we obtained all parameters of the 
Gaussian mixture model, we can 
compute the posterior tissue probability 
map  

 Why Bayesian? Provide a better and 
stable estimate.  



Bayesian Framework 

•  Posterior probability can be obtained from a 
prior probability 

        Likelihood                         Prior map € 

P(class | intensity) =
P(intensity | class)P(class)
P(intensity | class)P(class)

class
∑

: the probability obtaining image intensity given class. 
This can be obtained from our Gaussian mixture model 



Prior tissue probability maps 

ICBM Tissue Probabilistic Atlases 
C. Phillips 



(Tohka et al., 2004). The triangular meshes are not constrained to lie on
voxel boundaries. Instead the triangular meshes can cut through a voxel,
which can be considered as correcting where the true boundary ought to
be and reducing the partial volume effect.

The deformable surface modeling (Terzopoulos et al., 1988; Da-
vatzikos, 1995; Dale and Fischl, 1999; MacDonald et al., 2000) can be
used to segment tissue boundaries by either solving a partial differential
equation or optimizing an objective function. The result of deformable sur-
face modeling is usually repre- sented as triangular meshes. In particular
MacDonald et al. (2000) starts with an ellipsoidal mesh that already had
the topology of a sphere was deformed to t the shape of the cortex guar-
anteeing the same topology. The resulting trian- gular mesh will consist of
40,962 vertices and 81,920 triangles with the average internodal distance
of 3 mm. put more stuff here. Recently isosurface modeling called level
set method (Sethian, 1996) seems to show some promise in tissue bound-
ary segmentation and has been used in seg- menting the sagittal section
of the corpus callosum (Hoffmann et al., 2004). In validating segmenta-
tion results, most studies compare the performance of their al- gorithms
against the gold standard of expert manual brain segmentation (Boesen et
al., 2004) or synthetic data sets.

3.1 Bayesian Framework

The Bayesian segmentation framework utilizes the Bayes theorem in esti-
mating the poster probability of a voxel belong to a particular tissue type
from a given prior probability. Let C be the event of a voxel belong to a
particular class. Note that there are three different classes. The prior prob-
ability P (C) is obtained by averaging a large sample of binary segmentation
and divide the average by the total number of sample. An example of the
prior probability using the ICBM data set is given in....

Let T be the event that a voxel has a particular image intensity value.
This is that we usually observe in T1-weighted MRI. What we want is the
conditional probability P (C|T ) of the voxel belong to the class C given that
we have observed T :

P (C|T ) =
P (C ∩ T )

P (T )
. (3.1)

P (C|T ) is interpreted as the probability of the voxel belong to a specific
class when it has a particular intensity value. This is what we likely to
determine in probabilistic segmentation. The numerator can be written
as P (C ∩ T ) = P (T |C)P (C) while, from the law of total probability, the
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Details on Bayesian Framework  



probability P (T ) is given by

P (T ) =
∑

C

P (T ∩ C) =
∑

C

P (T |C)P (C).

Then the conditional probability (3.1) can be written in terms of the prior
probability as

P (C|T ) =
P (T |C)P (C)∑
C P (T |C)P (C)

.

The likelihood term P (T |C) is interpreted as the probability of a voxel given
the voxel belong to a particular tissue type and obtained from Gaussian
mixture modeling.

3.2 Gaussian Mixture Model

The Gaussian mixture models have been widely used for segmenting brain
images. This is the basis of the SPM segmentation routine. The k compo-
nent mixture model assume the underlying distribution f of data to follow
the mixture distribution of the form

f(y|Θ) =
k∑

i=1

pifi(y),

where fi ∼ N(µi, σ2
i ) are independent normal and the positive mixing pro-

portions pi add up to one, i.e.
∑k

i=1 pi = 1. For the k-components model,
there are 3k unknown parameters

Θ = (p1, · · · , pk, µ1, · · · , µk, σ2
1 , · · · , σ2

k)

to be estimated. The most widely used methods in parameter estimation
is the maximum likelihood estimation (MLE).

Suppose we have a sample Y = {Y1, · · · , Yn} drawn from the distri-
bution f(y|Θ). The likelihood estimation of Θ is given by maximizing the
loglikelihood

Θ̂ = argmax
Θ

n∏

i=1

f(yi|Θ) = argmax
Θ

n∑

i=1

ln f(yi|Θ).

For the mixture model, the optimization cannot be done analytically and
requires a iterative numerical technique called the expectation maximiza-
tion (EM) algorithm.
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K-components Mixture 

probability P (T ) is given by

P (T ) =
∑

C

P (T ∩ C) =
∑

C

P (T |C)P (C).

Then the conditional probability (3.1) can be written in terms of the prior
probability as

P (C|T ) =
P (T |C)P (C)∑
C P (T |C)P (C)

.

The likelihood term P (T |C) is interpreted as the probability of a voxel given
the voxel belong to a particular tissue type and obtained from Gaussian
mixture modeling.

3.2 k-Components Mixture Models

Mixture models have been widely used for segmenting brain images. The
k-components mixture model assume the underlying distribution f of data
to follow the mixture distribution of the form

f(y|Θ) =
k∑

i=1

pifi(y),

where fi is some distribution and the positive mixing proportions pi add up
to one, i.e.

∑k
i=1 pi = 1. Such distribution can be obtained by conditioning

on a multinomial distribution with parameters (p1, · · · , pk). To see this, let
(X1, · · · , Xk) be a multinomial distribution with parameters (p1, · · · , pk).
We further assume X1 + · · ·+ Xk = 1. The probability mass function of X
is given by

f(x1, · · · , xk) = px1

1 · · · pxk

k .

Note that if Xj = 0 then all other components Xi = 0 for i "= j, and
subsequently P (Xj) = pj . Then we define the random variable Y con-
ditionally on the event Xj = 1 such that Y ∼ fj if Xj = 1. This
defines the conditional density f(y|x). The joint density f(x, y) is then
f(xj = 1, y) = pjfj(y). This can be compactly written as

f(x, y) = [p1f1(y)]x1 · · · [pkfk(y)]xk .

The marginal density of Y is trivially then

f(y) =
∑

x

f(x, y) =
k∑

i=1

pifi(y).
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Therefore, the k-components mixture model can be obtained by mixing
samples obtained from each distribution fj with exactly pj proportion.

For the k-components model, there are 3k − 1 unknown parameters
to be estimated. The most widely used methods in parameter estimation
is the maximum likelihood estimation (MLE). Suppose we have a sample
Y = {Y1, · · · , Yn} drawn from the distribution f(y|Θ). The likelihood
estimation of Θ is given by maximizing the loglikelihood

Θ̂ = argmax
Θ

n∏

i=1

f(yi|Θ) = argmax
Θ

n∑

i=1

ln f(yi|Θ).

For the mixture model, the optimization cannot be done analytically and
requires a iterative numerical technique called the expectation maximiza-
tion (EM) algorithm.

3.3 Expectation Maximization Algorithm

The expectation maximization (EM) algorithm was first introduced by
Dempster et al. (J. Roy. Statist. Soc. 1997). Read Robert and Casella’s
Monte Carlo Statistical Methods for the introduction to EM.Flury’s A First
Course in Multivariate Statistics for the detailed discussion on EM applied
to Gaussian mixture model. See Little and Rubin (1987) and McLach-
lan and Krishnan (1997). EM is widely used in image segmentation. The
algorithm proceeds as follows.

Following the notation of Cesella, we augment the observed data Y
with with latent (unobserved or missing) data Y m such that the complete
data Y c = (Y, Y m). The density of the complete data Y c is denoted as

Y c = (Y, Y m) ∼ f(yc) = f(y, ym).

The conditional density for the missing data Y m, condition on observation
Y , is

f(ym|y, Θ) =
f(y, ym|Θ)

f(y|Θ)
.

Taking the logarithm on both sides, we get the loglikelihood for the
observed data

ln f(Y |Θ) = ln f(Y c|Θ) − ln f(Y m|Y, Θ).

Now taking the expectation with respect to f(ym|y, Θ0) for some fixed Θ0

on the both sides, we have
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Heuristic idea of EM algorithm 

•  Expectation maximization (EM) algorithm: 
iterative method for maximizing difficult  
likelihood functions. 

•  Instead of maximizing the difficult likelihood 
directly, we maximize easier likelihood by 
introducing latent variables. 
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E[ln f(Y |Θ)|Y, Θ0] = E[ln f(Y c|Θ)|Y, Θ0] (3.2)

−E[ln f(Y m|Y, Θ)|Y, Θ0]. (3.3)

Now denote the expected loglikelihood for the complete data as

Q(Θ|Θ0, Y ) = E[ln f(Y c|Θ)|Y, Θ0].

We maximize the likelihood in the following fashion

• E-step: compute Q(Θ|Θ̂j−1, Y ).

• M-step: maximize Q(Θ|Θ̂j−1, Y ) and take

Θ̂j = arg max
Θ

Q(Θ|Θ̂j−1, Y ). (3.4)

If the above procedure is iterated, we get the sequence of estimators Θ̂0, Θ̂1, · · ·
and it can be shown that it converges to the true maximum likelihood es-
timator Θ̂ [REFERENCE].

At least we can show that the Q function monotonically increases
over iteration. The argument is as follows. By the definition of Θ̂j+1 given
in (3.4),

Q(Θ̂j |Θ̂j, y) ≤ Q(Θ̂j+1|Θ̂j , y).

Let R(Θ|Θ0, Y ) = E[ln f(Y m|Y, Θ)|Y, Θ0]. From the Jensen’s in-
equality, it can be shown that

Θ0 = argmax
Θ

R(Θ|Θ0, y)

Then R(Θ̂j+1|Θ̂j, y) ≤ R(Θ̂j|Θ̂j , y). Consequently

ln f(y|Θ̂j) = Q(Θ̂j |Θ̂j, y) − R(Θ̂j|Θ̂j , y)

≤ Q(Θ̂j+1|Θ̂j , y) − R(Θ̂j+1|Θ̂j , y)

≤ ln f(y|Θ̂j+1).

The inequality guarantees the the sequence of estimators Θ̂j monotonically
increases the likelihood. Further, since the monotonically increasing se-
quence is bounded, i.e. ln f(y|Θ̂j) ≤ ln f(y|Θ̂), it must be converging to
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Application: Two-components  
Gaussian mixture model 

€ 

f (y) = pf1(y) + (1− p) f2(y)

€ 

f1(y) ≈ N(µ1,σ1
2)

€ 

f2(y) ≈ N(µ2,σ 2
2)

p = mixing proportion  estimated tissue density 

Parameters are estimated by the EM-algorithm 



Maximum likelihood function 

€ 

L = pf1(yi) + (1− p) f2(yi)[ ]
i=1

n

∏

€ 

logL = log pf1(yi) + (1− p) f2(yi)[ ]
i=1

n

∑

€ 

∂ logL
∂p

= 0Solve                               numerically 

Let’s avoid brute-force numerical optimization 



EM algorithm 

Observed variable Y 
Missing variable X: Bernoulli(p) 
Complete variable Z=(X,Y) 

The joint density of Z   

Conditional density of X given Y 



EM algorithm 

Conditional expectation 

E-step: Construction of Q-function: 

€ 

Q(p) = E logL(X,Y ) |Y[ ]



EM-algorithm 

•  M-step: 

€ 

∂Q
∂p

= 0

Iteration: pick any initial value between 0 and 1 



Convergence of EM algorithm 



 

The pixel intensity values 

€ 

f  (integers between 0-255) are modeled as the two component 
Gaussian mixtures 

€ 

f = π1 f1 + π 2 f2 , where 

€ 

π1 and 

€ 

π 2  are the unknown mixing proportion 
with 

€ 

π1 + π 2 =1, and 

€ 

f1 and 

€ 

f2  are independent Gaussian random variables. Each 

€ 

f i  is a 
Gaussian random variable 

€ 

N(µi,σ i
2)  with the unknown mean 

€ 

µi and the standard 
deviation 

€ 

σ i.  

Gaussian mixture model 



Various decision rules: 

f1 

f2 

Simplistic segmentation 
For each voxel intensity 
value y, check if f1(y) > f2(y) 
 Hard assignment 

More complicated one 
Mixing proportion 
 Bayesian segmentation 



MATLAB demonstration  
Gaussian mixture & EM algorithm 



Voxel-based morphometry (VBM) 

•  A new approach (Ashburner & Friston, 2000) 
Not really new anymore 

•   No ROI segmentation required. 

•  Anatomical difference is characterized 
at each voxel.  

Application of probabilistic segmentation: 



Introduction to VBM 
•  Fully automated image analysis technique 

allowing identification of regional differences 
in gray matter (GM) and white matter (WM) 
between populations without a prior ROI.  

•  Implemented in the SPM package (Wellcome 
Department of Cognitive Neurology, London, 
UK, http://www.fil.ion.ucl.ac.uk/spm)  



•  It does not require a priori knowledge of the 
ROI to perform the morphological analysis 
(Davatzikos, 1999; Ashburner and Friston, 2000; Chung et al., 
2001).  

•  No need for time consuming either manual or 
automatic segmentation of ROI.  

•  Anatomical differences can be detected at a 
voxel level within ROI itself giving additional 
localization power that ROI-based approaches 
lack.  

Advantages of VBM 



VBM procedures 

•  Normalize structural MRIs to the standard 
SPM template  

•  Segment the normalized images into white 
and gray matter and cerebrospinal fluid (CSF) 
based on a Gaussian mixture model (Ashburner 
and Friston, 1997, 2000).  

•  The final output: the probability of each voxel 
belonging to a particular tissue type. This 
probability is usually referred to as the gray/
white matter density. 



VBM 
pipeline 

T1 Weighted MRI 

Image normalization 

Segmentation 

Gaussian kernel smoothing 

General linear model 

Random field theory 
Multiple comparison correction 

Removing effect of  
nuisance covariates 

Tissue density 

Tissue segmentation 

MNI template or SPM template 

Pre-processing 

Studied! 

studied 



Pre-processing for VBM 

John Ashburner 



Smoothing 
Before convolution Convolved with a circle Convolved with a Gaussian 



Warped Grey Matter Density 12mm FWHM Smoothed 
Version 

Examples of four subjects 



Statistical Parametric 
Mapping… 

gCBF

rC
B
F

x

o

o
o

o

o

o

x
x

x

x

x

g..

αk1

αk2

ζ k
1

group 1 group 2 

voxel by voxel 
Linear model 

– ÷   

parameter estimate standard error 

= 

statistic image or 
SPM 



SPM results 
Studied! 



More on GLM and VBM 
and Image Smoothing 

Read ashburner.2000.…. 
  hagler.2006… 
Johns.2005… 

In relation to the above topics 



Real Example: 2D version of VBM 

m=12 normal controls n=16 autistic subjects 



Pre-processing 
Nonlinear image registration 

(Normalization) 

300 subjects MNI template 

Each subject undergoes 
this process to reduce 
positional variability. 



White matter segmentation 

Normalized image Segmentation of 
midsagittal corpus 

callosum region 



Average of 12 normalized mid sagittal segmented 
images showing well defined corpus callosum. 
This is our template. 

Mid-sagittal 
section 
of brain 



2D Gaussian kernel smoothing on white matter 
density map before any statistical analysis. 
Why? 



Is logit transform necessary? 

It is not necessary since Gaussian kernel 
smoothing will make data more Gaussian. 

Ashuberner suggested to use logit transform on tissue density  



White matter concentration difference 

- = 

autism control 

• Compute the sample mean at each voxel. 

• Is the density difference statistically significant ?  



White matter variability difference 

- = 

autism control 

• Compute the sample variance 
• Even though the difference shows unequal variance, 
you used two sample t-statistic with equal variance 
assumption. Why? It gives us the exact t random 
field. 





But the two sample t test doesn’t seem to be right. 
There may be possible age effect so it is necessary 

to remove the age effect. How? 

General linear model (GLM)  

Generalize this model 



Nuisance covariates 

Variables of interest 

Computing the sum of squared errors (residuals) requires  
the least squares estimation (LSE) of unknown parameters. 





Effect of age 
Age distribution for autistic subjects:  

16.1 (s.d. 4.5) 
Age distribution for control subjects:  

17.1 (s.d. 2.8) 
In this study, there is no visible age effect. 

However, a different study on the same data 
set shows significant age effect. 



p-value map for t-test on cortical thickness difference 

Decrease: left superior temporal sulcus, left occipital-temporal gyrus, right orbital prefrontal 
Increase: left superior temporal gyrus, left middle temporal gyrus, left and right postcentral sulci 



p-value map for F-test removing age effect 

Decrease: left superior temporal sulcus 
                left occipital-temporal gyrus 
                right orbital prefrontal 



It is better to remove the age 
effect in anatomical data 

especially for developmental 
age range (10-20 years). 



How to validate VBM framework ?  
This is not a permutation test although it looks like it. 

Randomly permute 16 autism and 12 controls to generate 14 autism 
and 14 controls. Our two sample t-test should not detect anything 
except possible random occurrences. 

Above all three random permutations, p-value > 0.3679 



Issue of image registration in VBM 

•  If the registration is perfect, every parts of CC matches 
perfectly. It will result in similar gray matter density 
maps. 

•  Similar measures make differentiating populations 
difficult. Why? It reduces between-group variability. 

•  If the registration is coarse, most part of CC will not 
match and it will result in large within-group variability. 

•  In order for VBM to work, coarse registration seems to 
be sufficient.  

Modulated VBM: 
•  There is a way to incorporate the amount of registration 

into VBM. We will talk about this after tensor-based 
morphometry. 


