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What is GLM

The general linear model (GLM) is a very flexible and
general statistical framework encompassing a wide
variety of fixed effect models such as the multiple
regressions, the analysis of variance (ANOVA), the
multivariate analysis of variance (MANOVA), the analysis
of covariance (ANCOVA) and the multivariate analysis of
covariance (MANCOVA)

The parameters of the model are mainly estimated by the
least squares estimation and has been implemented in
many statistical packages such as R or Splus and brain
imaging packages such as SPM and fMRI-STAT.



Model

Let y; be the response variable, which is mainly coming from images
and x; = (x;1,--- ,Zip) to be the variable of interest and z; = (21, - , zik)
to be nuisance variables corresponding to the :-th subject. We assume there
are n subjects. Then we have a GLM

Yi = ZiA + X0+ €

where A = (Aq,---,\¢) and 8 = (B1,--,0p)" are unknown parameter
vectors to be estimated. We assume € to be the usual zero mean Gaussian
noise. Then we determine the significance of the variable of interests x; by
testing the null hypothesis

H()Zﬂ:OVS. Hlﬂ#()



Inference

The fit of the reduced model corresponding to 8 = 0, i.e. y; = z;\, is
measured by the sum of the squared errors (SSE):

n

SSEq, = Z(yi_ZiB\\O)Qa

1=1

where S\E is the least squares estimation obtained from the reduced model.
Similarly the fit of the full model corresponding to 3 # 0, i.e. y; = z; \+X; 3,
is measured by n

SSE; = Z(yz — Z\| — Xi§1)2,
i=1
where Xl and 31 are estimated from the full model.

Then under Hy, the test statistic is the ratio

jo (SSE¢ — SSEq1)/p
~ SSEo/(n—p—k)

~ Fpn—p—k-

The larger the F' value, it is more unlikely to accept Hy.



Estimation

The unknown parameters are estimated via the least squares method. The
detailed exposition of the least squares estimation using the matrix inver-
sion is necessary for numerical implementation in MATLAB and it is the basis
of SPM and fMRI-STAT. The reduced model (2.1) can be written in a ma-

trix form

Y1 211 21k A1

; — S : : (2.4)
\ YUn J \ Znl Znk R >\n
y z X

By multiplying Z’ on the both sides, we obtain
Z'y = Z'Z.

Now the matrix Z’Z is a full rank and can be invertible if n > k. Therefore,
the matrix equation can be solved by performing a matrix inversion

o= (Z'2)"'2Zy.

Similarly the full model can be written in a matrix form by concatenating
the row vectors z; and x; into a larger row vector (z;,x;), and the column
vectors A and B into a larger column vector (A’, 3’)". Then the full model
can be written in a matrix form and solved similarly.



Application:
GLM on cortical thickness
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Deformable surface algorithm McDonalds et al. (2001) Neurolmage
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Multiscale triangle subdivision at each
iteration increases the complexity of
anatomical boundary



Cortical Surface

Polygonal mesh
Mesh resolution 3mm

82,190 triangles
40,962 vertices




Outer and inner cortical surfaces




GLM on thickness

Given two groups (autism vs. control), we are interested in testing the

significance of group difference on cortical thickness. So we consider the
following GLM:

thickness; = \; + (31 - group, + e, (2.5)

where the dummy variable group is 1 for autism and 0 for control. This
the case for k =1 and z;; = 1, and p = 1. The reduced model in this case
1S

thickness; = \;.

The least squares estimation of A\; is simply the sample mean given by

AN

1«
Al = - Ethlcknessi.
1=



The test statistic ' is then distributed as Fj ,_1_, which is the
square of the student ¢-distribution with n — 1 — k degrees of freedom, i.e.
t2_,_,. The advantage of using the ¢-statistic is that unlike the F-statistic,
it has two sides so we can actually use it to test for one sided alternative
hypothesis Hy : 31 > 0 or Hy : 81 < 0. Therefore, the t-statistic map can
provides the direction of the difference (if autism is thicker or thinner) that
the F-statistic map cannot provide.

The model (2.5) is not necessarily a proper model since the model
did not incorporate the possible confounding effects of brain size and age
variations for each subject. In order to control the possible confounding
effect of age, we consider consider following GLM:

thickness; = A\ + A2 - age; + (1 - group. + €;, (2.6)



MATLAB demonstration



Segmentation

eSegmentation is the partition of a digital
image into multiple regions according to
some criterion.

C. Phillips



Image Segmentation Methods

Intensity histogram based approach

Gaussian mixture modeling = probabilistic
output

*Shape based approach (PDE based)

Active contour, deformable surface
algorithms, level set = deterministic

output



Example: CT image
segmentation




MRI

Example




Application of deterministic
segmentation
ROI volumetry

* This is a traditional approach

* ROI volumetry measures volume of a
segmented region region of interest (ROI).



Example: Hippocampal volumetry
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1. Manually or automatically segment hippocampus
2. Count the number of masked voxels
3. #number of voxel x volume of voxel



Probabilistic segmentation
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FAGURE 1| Image segmentation using a price infermation

See Mietchen & Gaser, 2009



Image intensity histogram

CSF gray matter white matter



Bayesian framework

* Once we obtained all parameters of the
Gaussian mixture model, we can

compute the posterior tissue probability
map

- Why Bayesian? Provide a better and
stable estimate.



Bayesian Framework

« Posterior probability can be obtained from a
prior probabillity

P(intensity | class) P(class)
E P(intensity | class)P(class)

class

P(class | intensity) =

Likelihood Prior map

. the probability obtaining image intensity given class.
This can be obtained from our Gaussian mixture model



Prior tissue probability maps

ICBM Tissue Probabilistic Atlases
C. Phillips



Details on Bayesian Framework

Let T be the event that a voxel has a particular image intensity value.
This is that we usually observe in T}-weighted MRI. What we want is the
conditional probability P(C|T) of the voxel belong to the class C' given that
we have observed T

P(CNT)

P(CIT) = —pis

(3.1)

P(C|T) is interpreted as the probability of the voxel belong to a specific
class when it has a particular intensity value. This is what we likely to
determine in probabilistic segmentation. The numerator can be written

as P(CNT)= P(T|C)P(C) while, from the law of total probability, the



probability P(T) is given by

P(T)=) P(T'nC)=) P(T|C)P(C).
C

C

Then the conditional probability (3.1) can be written in terms of the prior
probability as

P(T|C)P(C)
P == "paioypioy

The likelihood term P(T'|C) is interpreted as the probability of a voxel given
the voxel belong to a particular tissue type and obtained from Gaussian
mixture modeling.



K-components Mixture

Mixture models have been widely used for segmenting brain images. The
k-components mixture model assume the underlying distribution f of data
to follow the mixture distribution of the form

f(y|e) = szfz

where f; is some distribution and the positive mixing proportions p; add up
to one, i.e. Zle p; = 1. Such distribution can be obtained by conditioning
on a multinomial distribution with parameters (p1,---,pr). To see this, let
(X1,---, Xk) be a multinomial distribution with parameters (p1,---,pr).
We further assume X; + - - -+ X = 1. The probability mass function of X
is given by

f(xlf” 7377{?) :pfl sz



Note that if X; = 0 then all other components X; = 0 for ¢« # j, and
subsequently P(X;) = p;. Then we define the random variable Y con-
ditionally on the event X; = 1 such that ¥ ~ f; if X; = 1. This
defines the conditional density f(y|x). The joint density f(x,y) is then
f(x; =1,y) =p,f;i(y). This can be compactly written as

f(z,y) = [prfr)]™ - - [pefe(y)]*F.

The marginal density of Y is trivially then

fly) = fla,y) =) pifi(y)



Therefore, the k-components mixture model can be obtained by mixing
samples obtained from each distribution f; with exactly p; proportion.

For the k-components model, there are 3k — 1 unknown parameters
to be estimated. The most widely used methods in parameter estimation
is the maximum likelihood estimation (MLE). Suppose we have a sample
Y = {Y1,---,Y,} drawn from the distribution f(y|®). The likelihood

estimation of O is given by maximizing the loglikelihood

AN

© = argmax | [ f(1:]©) = argmax } ' In f(5:]0).

For the mixture model, the optimization cannot be done analytically and
requires a iterative numerical technique called the expectation maximiza-
tion (EM) algorithm.



Heuristic idea of EM algorithm

« Expectation maximization (EM) algorithm:
iterative method for maximizing difficult
likelihood functions.

 |Instead of maximizing the difficult likelihood
directly, we maximize easier likelihood by
Introducing latent variables.



3.3 Expectation Maximization Algorithm

The expectation maximization (EM) algorithm was first introduced by
Dempster et al. (J. Roy. Statist. Soc. 1997). Read Robert and Casella’s
Monte Carlo Statistical Methods for the introduction to EM. Flury’s A First
Course in Multivariate Statistics for the detailed discussion on EM applied
to Gaussian mixture model. See Little and Rubin (1987) and McLach-
lan and Krishnan (1997). EM is widely used in image segmentation. The
algorithm proceeds as follows.

Following the notation of Cesella, we augment the observed data Y
with with latent (unobserved or missing) data Y such that the complete
data Y¢ = (Y,Y™). The density of the complete data Y¢ is denoted as

Yo=Y, Y")~ f(y°) = fly,y™).



The conditional density for the missing data Y, condition on observation
Y, is
f(y,y™|©)

fye)

fly™|y,0) =

Taking the logarithm on both sides, we get the loglikelihood for the
observed data

In f(Y[©)=Inf(YO)—In f(Y™|Y,0).

Now taking the expectation with respect to f(y™|y, ©¢) for some fixed O
on the both sides, we have



Elln f(Y[©)]Y,00] = E[n f(Y*0)|Y, O] (3.2)
_E[ln f(Y™]Y,0)|Y, ). (3.3)

Now denote the expected loglikelihood for the complete data as
Q(6]60,Y) = E[ln £(Y°|0)[Y; O]

We maximize the likelihood in the following fashion

e E-step: compute Q(@\(:)j_l,Y).

e M-step: maximize Q(@@j_l,Y) and take
@j — arg mgx@(@\@j_l, Y) (34)

Bounded monotonically increasing function > converges



Application: Two-components
Gaussian mixture model

f)=pfiM+UA-p)f,(y)
£,(y) = N(w,0,)

fr(y) = N(Mzagzz)

p = mixing proportion - estimated tissue density

Parameters are estimated by the EM-algorithm



Maximum likelihood function
L=[]lpf,)+-p f,(3)]

logL = Elog[pfl(yi) +(1- p)fZ(yi)]

dlog L

Solve =0 numerically

op




EM algorithm

Observed variable Y
Missing variable X: Bernoulli(p)
Complete variable Z=(X,Y)

The joint density of Z
flz,y) = [pfi@)]°laf2(y)]

Conditional density of X given Y

AW lafo(y)])
flely) = pfi(y) + qf2(y)




EM algorithm

Conditional expectation

pfi (y)
pfi1(y) + qf2(y)

]E(X|y,p) —

E-step: Construction of Q-function:

O(p) = E[log L(X.Y) Y]

- pofi(y:) p
= ) 1
— pofi(yi) + qofa(ys) S1-p

+nlog(l — p).



EM-algorithm

L _
op

* M-step:

1 pofilw) |
p n Z p[]f1(yi) =T QUf'Z(yi)

i=1
lteration: pick any initial value between 0 and 1

1l e p; f1(y:)

Pj+1 = n ;ﬁjfl(ye) + (1 —9;) f2(%:)



Convergence of EM algorithm



Gaussian mixture model

The pixel intensity values f (integers between 0-255) are modeled as the two component
Gaussian mixtures f =, f, + 7, f,, where &, and s, are the unknown mixing proportion
with 7, + 7, =1, and f, and f, are independent Gaussian random variables. Each f; 1sa

Gaussian random variable N(u.,07) with the unknown mean u, and the standard
deviation O..




100 |

60

40

Various decision rules:

3 10

Simplistic segmentation

| For each voxel intensity

value y, check if f,(y) > f,(y)

1 —>Hard assignment

| More complicated one
1 Mixing proportion
| —>Bayesian segmentation



MATLAB demonstration
Gaussian mixture & EM algorithm



Voxel-based morphometry (VBM)

* A new approach (Ashburner & Friston, 2000)

* No ROl segmentation required.

 Anatomical difference is characterized
at each voxel.



Introduction to VBM

* Fully automated image analysis technique
allowing identification of regional differences
In gray matter (GM) and white matter (WM)
between populations without a prior ROI.

* Implemented in the SPM package (Wellcome
Department of Cognitive Neurology, London,
UK, http://www.fil.ion.ucl.ac.uk/spm)



Advantages of VBM

* |t does not require a priori knowledge of the

ROl to perform the morphological analysis
(Davatzikos, 1999; Ashburner and Friston, 2000; Chung et al.,

2001).

* No need for time consuming either manual or
automatic segmentation of ROI.

« Anatomical differences can be detected at a
voxel level within ROl itself giving additional
localization power that ROI-based approaches
lack.



VBM procedures

« Normalize structural MRIs to the standard
SPM template

« Segment the normalized images into white
and gray matter and cerebrospinal fluid (CSF)
based on a Gaussian mixture model (Ashburner
and Friston, 1997, 2000).

« The final output: the probability of each voxel
belonging to a particular tissue type. This
probability is usually referred to as the gray/
white matter density.



Pre-processing

MNI template or SPM template

studied

Tissue segmentation

Tissue density

Studied!

VBM
pipeline

Removing effect of
nuisance covariates

Multiple comparison correction
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Smoothing

Before convolution Convolved with a circle Convolved with a Gaussian

A ., T:";. | |




Examples of four subjects
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Statistical Parametric
Mapping...
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Studied!

SPM results
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More on GLM and VBM
and Image Smoothing

Read ashburner.2000.....
hagler.2006...
Johns.2005...

In relation to the above topics



Real Example: 2D version of VBM

m=12 normal controls n=16 autistic subjects




Pre-processing
Nonlinear image registration
(Normalization)

Each subject undergoes
this process to reduce
positional variability.



White matter segmentation

Normalized image Segmentation of
midsagittal corpus
callosum region



Mid-sagittal
section
of brain

Average of 12 normalized mid sagittal segmented
images showing well defined corpus callosum.
This is our template.



2D Gaussian kernel smoothing on white matter

density map before any statistical analysis.
Why?



Ashuberner suggested to use logit transform on tissue density

Is logit transform necessary?

1
logit(p) : p — 5 log(1 ﬁp)

It is not necessary since Gaussian kernel
smoothing will make data more Gaussian.



White matter concentration difference

|
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autism control

Compute the sample mean at each voxel.

*Is the density difference statistically significant ?



White matter variability difference
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autism control

Compute the sample variance

*Even though the difference shows unequal variance,
you used two sample t-statistic with equal variance
assumption. Why? It gives us the exact t random
field.
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But the two sample t test doesn’t seem to be right.
There may be possible age effect so it is necessary
to remove the age effect. How?

General linear model (GLM)
density = A1 + Aqage + Bigroup + e

H02,81:0VS. le[}l;éO

Generalize this model



Y =z\+x0B+e¢€

— (371: T ,CBp) Variables of interest

— (21, ., Zk) Nuisance covariates

P (SSEy — SSE,)/p P
- SSEy/(m+n—p—k) pymtn—p=k

Computing the sum of squared errors (residuals) requires
the least squares estimation (LSE) of unknown parameters.



after removing age effect



Effect of age

Age distribution for autistic subjects:
16.1 (s.d. 4.5)
Age distribution for control subjects:

17.1 (s.d. 2.8)
In this study, there is no visible age effect.

However, a different study on the same data
set shows significant age effect.



p-value map for t-test on cortical thickness difference

Decrease: left superior temporal sulcus, left occipital-temporal gyrus, right orbital prefrontal
Increase: left superior temporal gyrus, left middle temporal gyrus, left and right postcentral sulci




p-value map for F-test removing age effect

Decrease: left superior temporal sulcus
left occipital-temporal gyrus
right orbital prefrontal




It Is better to remove the age
effect in anatomical data
especially for developmental
age range (10-20 years).



How to validate VBM framework ?
This is not a permutation test although it looks like it.

Randomly permute 16 autism and 12 controls to generate 14 autism
and 14 controls. Our two sample t-test should not detect anything
except possible random occurrences.

Above all three random permutations, p-value > 0.3679



Issue of image registration in VBM

« |f the registration is perfect, every parts of CC matches
perfectly. It will result in similar gray matter density
maps.

« Similar measures make differentiating populations
difficult. Why? It reduces between-group variability.

« If the registration is coarse, most part of CC will not
match and it will result in large within-group variability.

* |n order for VBM to work, coarse registration seems to
be sufficient.

Modulated VBM:

 There is a way to incorporate the amount of registration
into VBM. We will talk about this after tensor-based
morphometry.



