HW1 Solutions

See MATLAB demonstration



Seok Jun Hong

Solution
Given whole 3D coordinates of a specific anatomical object such as an amygdala, there are several
ways to calculate total surface area comprised of triangular meshes but only two concepts would be

introduced in this document as following.

1) In three dimensions, the area of a general triangle {A = (Xa, Ya, Za), B = (X3, Y, Zg), C = (X¢, Y,
Zc)} is the Pythagorean sum of the areas of the respective projections on the three principle planes

1 Ye —Ya Zp—Za)\° Xg—Xa Zp—Zy)? Xg—Xa Ys—Ya)’
_ij(det(Yc—YA ZC_ZA) +det(xc—XA ZC_ZA) +det(xc—XA YC_YA))

2) The shape of the triangle is determined by the lengths of the sides alone. Therefore the area S also
can be derived from the lengths of the sides. By Heron’s formula,

S=s(s—a)(s—b)(s—0)

1
where S = 5 (a + b + ¢)is the semiperimeter of half of the triangle’s perimeter.

To implement these concepts as a matlab code (including only the essential part),

~lfor i=1:2536

p=coord(tri(i,:),:):;

% algorithm 1 [x1 w1l z21; x2 v2 z2

% 0.5 x sgrt(pow(det([y2-v1l 22-21; y3-y1l 23-21]),2)
2—-21; X3-x1 23-z1]),2)

X3 §3 23]

% + powi(det ([x2-x1 =z




HW?2 Solutions

For a normal population, does amygdala volume
increase or decrease with age? Discuss the problem
with the sufficient number of references.



The significant and irreversible loss of volume in amygdala
with aging is observed because all neurons in the brain do not
regenerate (Rakic, 1985). The amygdala shows decreased
patterns in volume with age in a linear fashion (presumably
through the steady loss of neurons over the lifespan) (Mu et
al., 1999). The amygdala as well as gray matter in the
parahippocampal gyrus as a whole decreased linearly with age
(Allen et al., 2005). Jack Jr (1997) also reported the average
amygdala volume decline of 20.75mm?3/year.
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@article{jack1997medial, title={{Medial temporal atrophy on MRI in normal aging and
very mild Alzheimer's disease}}, author={Jack Jr, C.R. and Petersen, R.C. and Xu, Y.C. and
Waring, S.C. and O'Brien, P.C. and Tangalos, E.G. and Smith, G.E. and Ivnik, R.J. and
Kokmen, E.}, journal={Neurology}, volume={49}, pages={786}, year={1997}}

@article{allen2005normal, title={{Normal neuroanatomical variation due to age: the
major lobes and a parcellation of the temporal region}}, author={Allen, J.S. and Bruss, J.
and Brown, C.K. and Damasio, H.}, journal={Neurobiology of Aging}, volume={26},
pages={1245--1260}, year={2005}}

@article{rakic1985limits, title={{Limits of neurogenesis in primates}}, author={Rakic,
P.}, journal={Science}, volume={227}, pages={1054}, year={1985}}

@article{mu1999quantitative, title={{A quantitative MR study of the hippocampal
formation, the amygdala, and the temporal horn of the lateral ventricle in healthy
subjects 40 to 90 years of age}}, author={Mu, Q. and Xie, J. and Wen, Z. and Weng, Y.
and Shuyun, Z.}, journal={American Journal of Neuroradiology}, volume={20},, pages=
{207--211}, year={1999}}



It was observed that the amygdala volume increases during typical
childhood and adolescence (Ostby et al., ] Neuro, 2009). It might be
that temporal lobes including the amygdala and hippocampus play a
role in emotion, language, and memory and these cognitive functions
become pronounced between ages of 4 and 18 years (Giedd, J of
Adolescent Health, 2008).

Sex-specific maturational volume changes in the amygdala have been
shown (Giedd et al., ] Comp Neurol, 1996).

For adults, the amygdala volume with its adjacent hippocampus was
relatively preserved compared to the global loss of the brain volume
by ages (Good et al., Neuroimage, 2001).

No correlation between the amygdala volme and age was found after
controlling for other factors (Cherubini et al., Neuroimage, 2009).
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Andrea Cherubini et al., 2009. Neurolmage

1~18y age group, both boys and girls,
shows the positive correlation between
age and an amygdala volume regardless of
whether they have psychiatric disorders or
not (Brendon MN et al. Arch Gen Psych
2006; Matthew WM et al. Arch Gen Psych
2009).

However entering the post-adolescence, it has
reported that such a trend become to converge
into a specific volume (2000~2100mm3) (Hilary
PB et al. Arch Gen Psych 2003). It is thought
that this convergence might be due to the
saturation of rapid brain development and
relatively increased white matter tissue.
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Amygdala
volume

Peak Fjell (2009) age 18-94
1143 subjects. Linear

P Tt - reduction of amygdala volume

15 20 30 50 ¢ Age

Note 1. Specify sample size. There is huge difference between a 40-subject
study vs. a 1143-subject study.

Note 2. Amount of gray matter directly correspond to the amount of fMRI
activation. So for fMRI analysis in amygdala regions, you may want to
covariate fMRI signal with amygdala volume (see Oaks et al., 2007,

Neurolmage)



HW 3

Using the code developed in HW1, compute
the surface area of both inner and outer
cortical surfaces for all subjects. Then
determine the significance of the group effect
on cortical thickness while accounting for total
cortical surface area and age for all mesh
vertices. What is the maximum F statistic value
and the corresponding p-value?

Provide MATLAB codes.



The inner surface areas of autistic subjects are
significantly smaller than those of controls and to a
lesser extent, outer surface areas exhibit similar
pattern as well (two sample t-test was used).



It requires computing the areas of 4 different surfaces:
1. outer cortical surface of control
2. inner cortical surface of control
3. outer cortical surface of autism
4. inner cortical surface of autism

Some students wrote extremely lengthy code repeating
doing Heron’s fomula. Make a function call like

This function should compute the surface area of the given
surface. Then simply call this function 4 times.



What does it mean by covariating with cortical surface area?
You should have asked yourself at least two questions when you saw this
problem.

1. Which surface area to covariate?

Inner and outer cortical surface areas are highly correlated. So it does not make
any sense to add two highly correlated variables in the GLM. So simply put
the either outer or inner surface area into a model but not both.

Correct models:

thickness = lambdal + lambda2*age + lambda3*group + betal*inner_surface
thickness = lambdal + lambda2*age + lambda3*group + betal*outer surface
thickness = lambdal + lambda2*age + lambda3*group + betal*(inner_surface +
outer_surface)

thickness = lambdal + lambda2*age + lambda3*group + betal*(inner_surface +
outer_surface)/2

Incorrect model:

thickness = lambdal + lambda2*age + lambda3*group + betal*inner_surface
+beta2*outer_surface



2. Why covariating with cortical surface?

Since there is no information about brain size, cortical surface serves as
the only available global index for the brain size.



Raw result mapping p-value Thresholded with p-value < 0.05

~—

There are a lot of signals that are not clustered together.
All these can’t possibly be signal. So there is a need for smoothing

Seok Jun Hong



HW4 Solutions

Set up the general linear model testing for interaction
between the group and age for all mesh vertices. That is,
you need to test the significance of the coefficient betal in
the model:

What vertex gives you the most significant interaction?
How will you interpret your result?



Hansem Sohn

The interaction term in the GLM test whether the effect of age varies
between the autism patients and healthy subjects. In other words,
the sign and/or magnitude of the age effect on the cortical thickness
can be different in the two groups.
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Cortical thickness

Interaction effects on the cortical thickness between age and group
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If you simply shown this plot, there is no need to even explaining what interaction

term really means. But in order to be able to draw this plot, you had to know what
interaction term really means.




HWS5 Solutions

Following Chung et al. NI 2004 paper, perform
Gaussian kernel smoothing and perform a two sample

t-test on white matter density. Discuss your result.
There is no need to do multiple comparisons.

The problem ask you to find out why people do
smoothing before any statistical analysis.



Dajung Kim

Grid lines were drawn to identify the region of significant signal.
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Figure 2. The mean white matter density of control group (left). The second figure represents p-value map

from t-test. Gridline is drawn for detection of the statistically significant regions with structure of the corpus
callosum.

Statistically significant region is near or outside of the
boundary of the splenium. The observed group difference
might be the result of mis-registration. Whitwell (2009)
pointed out that VBM cannot differentiate the real volume
change from group difference due to mis-registration.



<Control> <Autism>
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The p-values of the two-sample
t-test are overlaid on the average
anatomical density map of the
corpus callosum (CC). The most
significant signal is observed in
the splenium of CC.

0.04

0.035

1n.o3 Mainly image processing
artifacts. Simply you

19025 should not try to over
1002 interpret or over analyze
these.
0.015
0.01 If you know the issue of

multiple comparison
corrections, you may
x unnecessarily worry about
this. But there is no need.

0.005




HW®6 Solutions

Write an EM algorithm for estimating 2 unknown
parameters mul and mu2 assuming the mixing
proportion pl and p2, and s.d. sigmal and sigma?2 are
known. Need to go through the textbook for detail.



Seok Jun Hong

The underlying principle of this algorithm is to estimate the parameters of a
model which maximizes the likelihood of data approximately by the
repeated two step ( expectation and maximization steps) since the
direct analytical estimation of the model parameters are not feasible.

Repeat until convergence: {
E-step) For each 7, 7, set . : :
( P) E Trick to the this problem is to
u},ﬁ.z‘) = p(2® = j|z?; ¢, u,x)  fix the mixing proportions and
variance in the full version of

M-step) Update the parameters:
( 2 : EM algorithm, which are given

m

b iZ ) in many t.extbooks and simply
! mée— lterate with respect to the
=
g 0@ ) formula involving the means.
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Hansem Sohn
Log p(Y|mui,muz) = i log(p1*f1(yi|mui)+p2*f2(yilmuz))

By setting the partial derivative of the above equation with respect to muy
and muz to 0, we can obtain the following equation.

i {p*fi(yiimuk) / Om pm*fm(yi|mum))*sigmai*(yx-mux)} = 0 for each k

Rearranging for mug lead to the next equation.

Muk = {}i (Rix*yi)} / (Xi Rik)

Where Rik = px*fk(yiimux) / Om pm™fm(yilmum)). Using this equation
iteratively with the other known parameters, mu: and mu; can be estimated. The
EM algorithm can be summarized as below.

(1) Initialize muj, muz and evaluate the initial log likelihood.
(2) E step: Evaluate Rix using the current parameters.

(3) M step: Re-estimate mu and mu; using Rix

(4) Check for convergence.

Reference: Pattern recognition and machine learning by Christopher M. Bishop
(2006)



Seung-goo Kim

<X-axis: # of iteration; Y-axis: estimation for means>

Demonstration of EM algorithm
showing the convergence to the
estimated means.

Another reference:
Martinesz & Martinez (2002)



HW7 Solutions

Redo HW5 with at least three different bandwidths
(suggestions: 5, 10, 15, 20mm) and discuss the
effect of different bandwidth on the final result
(after performing t-test). There are a couple of
Neurolmage papers out there that discuss this
Important issue.

The problem ask you to determine the effect of
smoothing on the final statistical result.



Dajung Kim

Omm 10mm 15mm 20mm

Figure 3. A two sample f-test results comparing the white matter density of CC. {a) smoothing bandwidth = Omm,
(b} 10mm, {c) 15mm, (d) 20mm. Color bar indicates the p-value. The maximum t-statistic is on the splenium of the

CC.

There is not much difference

Rametti (2007) pointed out in his hippocampal VBM analysis that
small smoothing kernel (4- 8mm) in small structure increased
sensitivity. Salmond (2002) reported that with 4mm FWHM kernel
size, normality is sufficiently guaranteed to test valid in balanced
design. The CC used in this study is relatively small compared to
whole-brain, it is appropriate to use a small kernel size below 10mm.



| wanted to observe what really happens when you change the FWHM
on your final statistical analysis result. It can change your inference.




Smoothing, low-pass filtering, has shown several advantages for
image processing such as improvement in SNR and increased
sensitivity in statistical analyses. In addition, the increase in the
FWHM of the Gaussian kernel reduces the number of non-normality
voxels (Jones et al., Neuroimage, 2005).



HWS8 Solutions

Redo HW3 after heat kernel smoothing. Discuss your
results with and without smoothing. Reading Chung et al.,
Neurolmage 2005 will help you understand the problem.

Dajung Kim

b £




This is what | wanted to see and demonstrate to me!
Many students didn’t have clue why | was asking this
particular a bit tedious problem.

<unsmoothed>

<unsmoothed>

Seung-goo Kim



Raw result mapping p-value Thresholded with p-value < 0.05

Not smoothed by

heat kernel
- 4003
- 40025
- dooz

Smoothed by

heat kernel

You get less number of clusters and much
Seok Jun Hong larger cluster = easier interpretation



Read Lerch and Evans, 2005. Neurolmage

Neurolmage

www.elseviercomybocme ynung
Neurolmage 24 (2005) 163173

Cortical thickness analysis examined through power analysis and a
population simulation
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HW9 Solutions

Compute the length of 10000 tracts and plot the
histogram. Threshold the histogram at upper 10%
and determine the longest 10% tracts. What tracts
are likely to be longer than other tracts. Discuss

your result.

1 Point deducted if you did KS-test on kernel density
estimate blindly without the discussion of the optimal
amount of smoothing and tail distribution issues.



Seung-goo Kim

The superior longitudinal fascicle, Schuz & Braitenberg (2002)
microscopically indentified in the indentified two group of white
postmortem human brains by Burgel matter; “short-distance (10~30 mm)
et al. (2005, Neurolmage), connects fibers below the gray matter that
mainly occipital lobes with frontal .
. : L follows its contours, and long

association cortices which is located , ,

distance (30~170 mm) fibers that

medial to the corticospinal fibers. . . .
are bundled into fascicule in the
deep white matter.

“As a rough rule, the number of
fibres of a certain range of lengths
is inversely proportional to their
length”

Schuz & Braitenberg (2002) The human cortical white
matter: Quantitative aspects of cortico-cortical long-range
connectivity. Cortical Areas: Unity and Diversity, Conceptual
Advances in Brain Research. pp 377-386, Taylor and Francis
it % % W % € r > ziz 0 London




Ehhhhh....

% 10% tracts. Few students worked

prctile(Inth(1,:),90) so hard to write

% the length of the 90th percentile prctile command.

is 80.211.

upperl0_tract=find(Inth(1,:) This is actually easier

>prctile(Inth(1,:),90)); than you think. All

% get upper 10% length indices. you need is to sort
measurements.

figure;

bin=[1:2:180];

hist(Inth,bin); hold on;
hist(Inth(upper10_tract),bin);
GG=get(gca,'children’)
set(GG(6),'FaceColor',[1 1 1])
set(GG(5),'FaceColor',[.85 .16 0])
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Length of Tract
160.4590
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Kernel density estimation
= can smooth out histogram
= 1D version of heat kernel smoothing

Hansem Sohn

See lecture notes on
guantile and percentile.
Chapter 2.1 of the
textbook



Read Chapter 2.1 and

MATLAB demonstration



The most of the long-range tracts are for remote Hansem Sohn
interaction between anterior and posterior parts
of the brain or across the midline.
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Four major fibers tracts: cortico-spinal tract (blue), traversal tracts
through splenium and genu of corpus callosum (red), cingulate
(green), longitudinal fasciculi (yellow). (Fillard & Gerig, 2003)




Whitaker: Volumetric tracts, computed interactively
using the method of [Jeong et. al 2007], displayed as
ellipsiodal glyphs, colored with orientation.



Ji Won Hur

right and left arcuate fasciculus (Raf & Laf),
the right and left superior longitudinal
fasciculus (Rslf & Lslf), and tapetum of
corpus callosum (Ta).

The longer fiber tracts are fasciculus, a bundle of nerve fibers, and corpus callosom.
Above red tracts indicate Superior longitudinal fasciculus (Arcuate fasciculus; the
neural pathway connecting the posterior part of the temporoparietal junction with
the frontal cortex in the brain), Dorsal longitudinal fasciculus (myelinated axon
bundles carrying information between neurons. The ascending and descending DLF
fibers, conveys visceral motor and sensory signals) and Medial longitudinal fasciculus
(carrying information about the direction that the eyes should move). The corpus
callosum is a structure connects the left and right cerebral hemispheres. It facilitates
communication between the two hemispheres. It is the largest white matter
structure in the brain, consisting of 200-250 million contralateral axonal projections.



HW10 Solutions

Based on the length of tracts, determining if there
is any tract length difference between two
subjects. There can be many different solutions to

this particular problem.



Why you should not use the two sample t-test for this problem?

Two sample t-statistic only tests for the group mean difference

€ >



Number of tracts

Histogram of tract length
2500 T T T T

B =.b001 |
B sub405
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/ Tract length (mm)

Apply t-test at each interval

SooHyun Park



Localized tract length comparison Seung-goo Kim

The splenium of the corpus callosum was manually defined as a ball of radius 5mm
originating (62, 52, 25) in the given coordinate system and visually checked for both two

subjects (Fig. 6).

After the origin (x0, y0, z0) of the sphere had been defined, the tracts passing
through it were identified for any point (x, y, z) consisting a tract;

(d;d;)<r
d; = [ (x; — x0), i — o), (2 — 20)]

where r is the radius of the sphere.

T omst

0.025

No difference

001 |

0.005 -

Care should be taken using
kernel-density estimation. See MATLAB demo.



Two sample KS-test

The test statistic is:
D(x1,x2) = maxi{iF1(x) — F2(x)|)
where F1(x) is the proportion of x1 values less than or equal to x and F2(x) is the
proportion of x2 values less than or equal to x.
The null hypothesis is rejected at level alpha it

nl *n2
nl + n2

Where nl and n2 are the numbers of iid observations and K, is found from

Pr(K<K,)=1—-a

D(n1,n2) > K,



Tract clustering Jarang Ham

Euclidean distance between the center of mass of tracts

l T

subject01 [subject 01]

[subject02]

Adjacency matrix

After clustering to
bundles
-superior view- .

Adjacency matrix of distance

8 8 8 ¥ B 8 B 8 B 8

100 200 300 400 500 600 700 800 90 1000

subject 01 s



HW11 Solutions

Clearly describe what Hotelling's T-square test
procedure is. What are the underlying statistical
assumptions in Hotelling's T-square test
procedure? Are these assumptions satisfied in the
above example? Why we are not using the two-
sample t-test in Chung et al., 2010 and the above
example.

Sample covariance matrix needs to be computed
for Hotelling's T-square statistic. Explain what
covariance matrix is. Covariance matrix is usually
modeled as Wishart distribution.




0.5 T T T T T T T T T |

045k ... . ........ ........ S - Seung-goo Kim

Testing the effect size
difference in 1D ’

035F------- ........ ........ g"",."""":"'i'"'.."'. ...................................

(113 SR P e feeeas PRRTR
: : : ;oA

: : s : o : : :
03 F-----. Eeee e ERERREEE E.','d ..... L I‘-,'E ....... FEERRREEE EEERREEE RRERRRE -

||||||||
||||||||

025k---.-.. ........ ........ i," ....... ........ 'l.i ....... ......... ........ ....... - 1

0.2 : : : /: : o\ : : : mm
o AN o AN S S 3 EiSEnssciminie

o1k AN S Y LT - A— 00 WO - A e J

. . J A . . | . .
IR TR R S, b fee AR ST WA R A R i

005 b------- ....... ......... ........ ‘ ....... ........ ....... -

Testing the effect size

difference in higher
diemension : P

0254 i

024 P T TN NN T

o154 i

Hotelling’s T-square assumption: =
Two samples are assumed to have "o+
identical covariance structures. 3

e
:

Probability Density

%1



Probability

Prohability

088

0.80

075 -

0.50 p

0.2s

0.10
0.0s

0.0z

088

085
080

075

0.50

025

0.10
005

0.0z

For each order; x-coefficient; Group 1

-002 -0015 -001 -0.005 0
Data

For each order; x-coefficient; Group 2
. . . . —

-0.036-0.034-0.032 -0.03 -0.025-0.026 -0.024

Data

Probability

Probability

088

085
0.80

0.75

0.50

025

0.10

005

0.0z

088

08s
080

075

0.50

025

0.10
0.05

0.02

For each order; y—coefficient; Group 1

-0048 -0046 -0044 -0042
Data

-0.05

For each order; y-coefficient; Group 2

o i

-0.064-0.062-0.06-0.058-0.056-0.054-0.052
Data

Probability

Probahility

088

085
0.80

075

088

08s
080

075

0.50

025

0.10
005

0.02

For each order; z-coefficient; Group 1

-0.0295 -0.029

Data

For each order; z-coefficient; Group 2
........ P - A

-003 -0029 -0028 -0027 -0.026
Data

Normal probability plots



Read Chapter 2.1

MATLAB Demonstration



HW12 Solutions

Literature review. Given the 3D graph model of
structural connectivity, discuss how others
performed the network complexity analysis. A
certain clinical population may have over- or
under-connectivity of brain compared normal
controls.

Discuss how you will test over- and over-
connectivity hypothesis.

Then using the 3D graph model given in
NIP.lecture05.dti.m, determine which subject has
more complex brain network.
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O. Sporns, G. Tononi and G.M. Edelman

Theoretical Neuroanatomy: Relating
Anatomical and Functional Connectivity in
Graphs and Cortical Connection Matrices

The Neurosciences Institute, 10640 John Jay Hopkins Drive,
San Diego, CA 92121, USA
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Giulio Tononi

Neural Basis of Consciousness; Functions of Sleep

http://tononi.psychiatry.wisc.edu/research_overview.html|

Our laboratories focus on two
neurobiological problems — the
mechanisms and functions of sleep and
the neural substrates of consciousness.
Both problems have considerable
medical implications, especially for
psychiatric disorders such as depression

and schizophrenia.




Complex brain networks: graph
theoretical analysis of structural and

functional systems

Ed Bullmore** and Olaf Sporns$

Histological or
imaging data

Functional brain network
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Figure a is the brain anatomical
network of the healthy volunteers,
and it shows a hierarchical
organization characterized by low
clustering of high-degree nodes.

Figure b is the equivalent network
on people with schizophrenia,
showing loss of this hierarchy

(Bassett, Bullmore et al. 2008).
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Ji-young Lee

A complex system is: any system consisting of a number
components which give rise to the collective behaviour of the
system by interacting with its environment in non-linear ways
(even though there are examples of linear complex systems)
(NECSI, 2008; CSCS, 2005; Rocha, 1999). For example, the brain is
a complex dynamic system in which information continuously
processed and transferred to other interconnected regions with
functional dynamics (Sporns et al., 2004, 2000). A system’s
complexity may be of one of two forms: disorganized complexity
and organized complexity (Warren, 1948). In essence,
disorganized complexity is a matter of a very large number of
parts, and organized complexity is a matter of the subject system
(quite possibly with only a limited number of parts) exhibiting
emergent properties. Disorganized complexity results from the
particular system having a very large number of parts and the
interactions of the parts can be seen as largely random.



Do not underestimate the usefulness of degree and degree
distribution as a measure of network complexity. This has to be
the first step in quantifying a graph!

Most fundamental network measure is the degree of a node
which is the total number of connections that link the node to
the other nodes. Degree of a node can be directly computed
from the adjacency matrix by adding all the binary values in each
column of the matrix.

There are a lot of crappy network measures that are irrelevant or
useless in extremely large network or brain network. Don’t blindly
expect all of them to work magically somehow.



Comparing to the random network, brain network is known to
have higher clustering coefficient, shorter path length and
power law form of P(k)~k>*"3. Based on these characters, brain
networks are suspected to follow the pattern of

Small-world networks are characterized by a high level of
clustering and a short average node-to-node distance (Watts and
Strogatz, 1998)

Scale-free networks are characterized by a connectivity
distribution that follow P(k) ~k™, indicating that most of the
nodes have only a limited number of connections, but that a
small number of so called hub-nodes have a large number of
connections and are holding the network together (Barabasi and
Albert,1999; Grigorov, 2005)



Autistic children show increased local but reduced long-distance cortical—
cortical reciprocal activity. It is also shown that autistic children have
deficient corticocortical fibers (Hughes et al., 2007).

One can test the hypothesis of increased local connectivity by calculating
the degree of each node and clustering coefficient (CC). If the degree of
nodes and CC is higher in the autistic children in a certain region
comparing to the normal control, then the hypothesis can be confirmed.
For the reduced global connectivity, we can calculate path length and
compare this to the normal population. If the path length of autistic
children are significantly shorter than that of the normal control, then
one can conclude that the connectivity between the sub-networks of the
brain is reduced (i.e. modules of the brain are less connected). In normal
population regions of right and left Thalamus, bilateral superior temporal
lobe and anterior/posterior cingulated cortex and precuneus show high
connectivity degree (M.P. van den Heuvel et al., 2008)
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Connectivity Distribution P(k) in M.P. van den Heuvel et al (2008).

Note: Graph is in logscale !



The complex network theory has originated from the graph theory in
mathematics (Strogatz, Nature, 2001; Newman, SIAM Rev., 2003; Barabasi
and Albert, Science, 1999). To perform the complex network analysis for
the structural connectivity, the following procedures are commonly
executed. (1) Construction of brain networks from large-scale anatomical
connectivity dataset has to be done first of all (Rubinov and Sporns,
Neuroimage, 2009). Structural connectivity can be inferred from
histological or Neuroimaging data like DTI. After this, one has to define the
nodes and links of the network possibly by anatomical parcellation
(Bullmore and Sporns, Nature Reviews Neuro., 2009). In addition, weighted
and/or directed links can be taken into account whenever possible. And
then (2) various complex measure of brain connectivity can be applied to
characterize properties of the network of interest, for example, modularity,
resilience, and so on. The following figure well summarized all relevant
concepts of the frequently used measure of the complex network (Rubinov
and Sporns, Neuroimage, 2009).



The structural connectivity, by itself, has to meet the need of functional
integration and segregation (Tononi et al., PNAS, 1994). Hence, a certain
psychiatric or other clinical patients can exhibit over-connectivity and
under-connectivity. To test it, measure of the functional integration and
segregation, which corresponds to over- and under-connectivity,
respectively, must be devised. The well-known measure for functional
segregation is the clustering coefficient, which can be defined as the
number of connections between the neighbors of a node divided by the
maximum number of possible connections (Watts and Strogatz, Nature,
2998). For the functional integration, characteristic path length has been
applied, which is the average shortest path length between all possible
pairs of nodes (Rubinov and Sporns, Neuroimage, 2009). Thus,
characterization of these or other measures enables us to determine
whether the clinical population has a pathological network property. Many
previous studies have done this to investigate underlying mechanisms of
Alzheimer’s disease (Supekar et al., PLoS Comut. Biol., 2008; Stam et al.,
Brain, 2008), schizophrenia (Liu et al., Brain, 2008), Seizures (Ponten et al.,
Clin. Neurophysiol., 2007), and other neurological and psychiatric diseases.



function C=clustering_coef_bu(G)
%C=clustering_coef bu(G); clustering coefficient C, for binary undirected

graph G
o)
JoReference: Watts and Strogatz, 1998, Nature 393:440-442

/o
oMika Rubinov, UNSW, 2007 (last modified September 2008)

n=length(G);
C=zeros(n,1); Survival tip:

foru=1:n
Reference, reference and

V=find(G(u,:));
k=length(V);
if k>=2: reference.
S=G(V,V);
C(u)=sum(S(:))/(k"™2-k);
end
end

%degree must be at least 2
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Rubinov and Sporns, Neuroimage, 2009



Network complexity measures

1) Node degree, degree distribution (Amaral et al. PNAS 2000,
Barabsi et al. Science 1999)

2) Clustering coefficient (Watts et al. Science 1998, Milo et al
Science 2002)

3) Hubs, centrality (Freeman et al. Sociometry 2977)

4) Modularity (Girvan et al. PNAS, 2002, Guimera et al, PNAS 205)



HW13 Solutions

Explain clearly what Wishart distribution is.
Randomly simulate 1000 Wishart distribution in
MATLAB. Explain where Wishart distribution can
be used in brain imaging.

No point given for any student who couldn’t clearly connect to the
description of Wishart distribution to the actual MATLAB code used.

Please don’t even bother to submit things you don’t understand. It is
your job to convince me you clearly understand the material.



Seung-goo Kim

The chi-square distribution is formalized as
k

-3
1 9i

where X; is a normally distributed vector, |; is the mean of the vector, g; is the
standard deviation of the vector, and K is the number of dimensions (or vectors).

And the Wishart distribution is formalized as
S=X"X~ w,(V, n)
when X is an n x p matrix, each row of which follows normal distribution in p-
dimensions as

Xi = (x, ... 2 )~ N,(0,V)
and the positive integer n is the number of degrees of freedom, V is a positive-
definite matrix for scale, sized p x p.



covill

covl2

cov22

Seung-goo Kim

I T Diagonal terms are related to
S I T Chi-square distribution

Cova2

Covi2 S50



HW14 Solutions

Intercorrelation analysis of cortical thickness.
Following Lerch et al. (2006. Neurolmage),
compute the intercorrelation of cortical thickness
and display the result using our autism data set.
You can choose any seed vortex to construct the
correlation map. Determine if there is any
correlation difference between the groups.
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Seung-goo Kim

To incorporate age

o effect, partial
correlation has to be

o © used. Then how you

o would incorporate age
o o information?

3.2 34 36 338 4 42 44 46 43 5

Thickness of seed vertex (visual cortex, -22.5100, -101.2880,
16.3500) vs. target vertex (left parietal lobe -8.69, -55.29, 74.66)
in Control (blue) and Autism (red).



Eunkyung Kim

X 1()s linear regression of age and thickness
1.75¢ ® raw thickness
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® estimated thickness
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By fitting thickness = c1 + c1*age and obtaining the predicted thickness



Correlation on residual

thick: = c1 + c2*age + e

Correlation Partial Correlation

thick, = c1 + c2*age, + e,

Are they same or different?



Partial correlation
Measure of dependency while removing
the effect of other variables.

:Dependency of interest @

Dependency between Y1 and
Y2 is influenced by other
variables X1 and X2

X1 X2

Read Chapter 2.11 of the textbook



Case study:

We are interested in relation between
Y1 = cortical thickness
Y2 = behavioral measure

Fact:
e Cortical thickness related to age (X1)
eCortical thickness related to brain size (X2)

What we want:
Corr(Y1,Y2) while accounting for X1 and X2



Y = (Y,Y,),X = (X,.X,)

Covariance matrix: V(Y’ X)’ — ( SYY gYX )
XY XX

Partial covariance of Y given X:

Yyvy — SyxZxxExy = (0i)

Under normality,
this is equivalent to the conditional covariance:

Cov(Y|X)



Correlation of emotion recognition response time and cortical thickness while
accounting for age and brain size
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Da Jung Kim

Firstly, Designation of a seed vertex: | chose the seed vertex, where group differences are
detected at a threshold of p<0.01 (from previous HW8). Seed vertex is represented with x
(30.5),y (18.6),z (-9.9) coordinates as below. Corresponding vertex number is 16071, right
ventrolateral prefrontal cortex (BA47/45/44).

% Pearson correaltion at seed point 16071
[rho1, pval1] = corr(control_t(:,16071), control_t(:,:));
[rho2, pval2] = corr(autism_t(:,16071), autism_t(:,:)):

Can’t possibly simpler than this!



JU3IdJ20H uolie|aliod

Specifically, seed vertex with right temporal region in autism shows decreased association

than controls. This result partly provides supporting evidence that altered cognitive process
is based in abnormality in prefrontal-limbic circuitry in autism (Courchesne et al 2004 /"""

Neurol
).



Random permutation test

Topic for Statistical Methods in Neurolmage Analysis in 2011



HW17: Estimate normal vectors on the above cortical
surface without using PCA. Compare your method with
PCA. Which one performs better? Other than fitting a
qguadratic surface, why estimating surface normal is
important in brain imaging applications. Discuss.




Weighted average with respect to interior angles
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ity of surface.

Hence, it improves the normal vector estimation.

Mesh filtering improves the qual
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Validation

EunKyung Kim

Validation against unit sphere where normal vectors are known analytically.




Measuring the difference between two normal vectors

<>
(uAlIEA|

where ni is the unit normal estimation using method j on vertex i on a noisy surface and Si

error’ = cos

the unit normal estimation using method j on vertex i on a smooth surface. The error map visualized
on the smoothed surface in Fig. 12.




SeokJun Hong

1. Assume that there is a 2D plane which normal vectors n is (a, b, -1) in 3D space and this
plane can be expressed as an equation like,

aX+bY+c=17Z

2. We have neighboring points per one center point and the three dimension coordination of
these points form a matnx D (X, Y, Z).
3. For setting up the regression along the assumption, it could be expressed by,

B

R S X ray
D(:,3) = [D(:,1) D(,2) 1] [b‘
c

And the beta coefficient is calculated as a manner of OLS,
B=inv(X' xX) xX'xY

4. The unit normal vector of local surface consisting of a node set is

a,b,—1
\/a2+b2+12( )



The normal vector is considered as a kind of sensitive feature to
represent the unique property of local surfaces. For example, the well-
known skull striping tool, BET (fmrib oxford; www.fmrib.ox.ac.uk/fsl/
bet2/index.html) calculates the normal vector for estimating the
growth boundary such that the surface would be forced to be smooth
and all vertices would be equally spaced [Stephen M. Smith, Hum Brain
Map, 2002]. The normal vector also is used as the landmark feature to
minimize the difference between the gradient points on image and this
normal vector when performing surface-based registration. This
minimization step finally achieves to register atlas surface to subject
image in the research of [Zhiyong Xie et al, Medical Imaging 2006].
Actually traditional use of this normal vector predominates over the
cortical thickness analysis. Although there might be better algorithmic
definitions of thickness for accurately detecting cortical surface, the
thickness is basically defined as the length from the inner/outer
surface vertex to the outer/inner surface along the normal

direction on the surface vertex [Tianming Liu et al, Neurolmage 2008].



The usefulness of estimating the normal vector is not limited to the
structural study using anatomical T1 image. Recently several Diffusion
Tensor Imaging (DTI) has studied the properties of principle direction
drawn from Tensor Matrix based on the normal vector on the surface.
For example, Hao Huang et al. has studied the anatomical properties
of Human Fetal Brain using DTl and in this research, they calculate the
normal vectors for measuring of the angle between the tensor
primary eigenvector and the normal surface vector [Hao Huang et al, J
Neurosci, 2009]. In contrast, there is the case that the principle
direction of DT matrix around the surface boundary was intensively
calculated for a better estimating the normal vectors, which is called
as Surface-Normal Mapping using DTI [Evern Ozarslan et al,
Biophysical J 2008].



CURVATURE INDICES: This is assigned to every surface triangle
and quantifies the degree of surface convexity or concavity. One
method to calculate curvature is to sum the projections of the
centers of surrounding triangles onto the surface normal of
each triangle. Positive Cl reflecting convexity is ‘gyral’, while a
negative or concave Cl is ‘sulcal’. The higher the absolute value
of the Cl, the ‘tighter’ the curve. Conversely, the lower the

absolute value of the Cl, the ‘looser’ the curve (Nopoulos et al,
2000; Bartesaghi and Sapiro, 2001).

-CORTICAL DEPTH: This is calculated as the magnitude of the
vector normals to each surface triangle, originating at the pial
triangle surface and terminating at the gray/white surface
(Nopoulos et al, 2000). This can account for cortical thickness
(Andrade et al., 2001). Surface normal at each location is a
prerequisite for principled cortical thickness measure (McDonald
et al., 2008)



HW18: Either compute surface curvatures or come
up with your own measure of surface bending/
folding on the above cortical surface. Why cortical
bending/folding is biologically important? What do
you think is causing the cortical folding? Discuss.



SeokJun Hong

Following the quadratic surface fitting method given in the textbook,

Mean Curvature _ Gaussian Curvature




S.G. Kim
Following Cachia et al. (2003), the mean curvature estimation (H) can be computed as
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Fig. 3. Approximarion of the mean curvature from an irregular mesh [60]. «;
and a; denote respectively the triangle angles and areas, [3; correspond 1o the
dihedral angles berween the normals n ;,; the edge lengths are noted ;.




Jiwon Hur

The meshes model the cortical surflace of the brain consisting of gyri and sulci. We
used these meshes to calculate the mean curvature (do Carmo, 1976) at thousands
of points across the cortical surfacg. Mean curvature is an extrinsic surface measure
and gives information about the change in normal direction along the surface

(normals are vectors pointing outwards perpendicular to the surface). Mean
curvature at a given point is defined as

a = 2
Toamaan = ¥ ((t' -:..'} N")

where X" v is the centroid of its neighbors of vertex v, Bv is the average distance
from the centroid of each of the neighbors, and I is the vector product operator

(MacDonald: A Method for Identifying Geometrically Simple Surfaces from Three
Dimensional Images. PhD Thesis McGill University, Montreal).



Figure 2. Projections of principal curvature functions k1 (fop) and k2 (bottom) across entire brain surfaces. On left, the
youngest neonate at 30.4 weeks CGA. In middle, the term neonate at 40.3 weeks CGA. On right, an adult subject. The
complexity of the topological pattern of ki appears to peak around term and appears to represent the primarily cylindrical
folds of the gyri/sulci. In contrast the topological variation of k2 is at a higher frequency and appears to represent small

local “bumps” or “dimples.” (Pienaar, 2008).
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What causes cortical folding:

What drives the cortical folding during the development process
is not exactly known. However, several theories suggested that
it is determined by tension of the wiring between the cortical
areas (Van Essen, Nature, 1997), the different speed of growth
in the cortical layers (Richman et al., Science, 1975), the

subcortical cell generation (Kriegstein et al., Nat. Rev. Neurosci.,
2006).

Kriegstein A, Noctor S, Martinez-Cerden”o V (2006) Patterns of neural stem and
progenitor cell division may underlie evolutionary cortical expansion. Nat Rev
Neurosci 7:883— 890.

Richman DP, Stewart RM, Hutchinson JW, Caviness JVS (1975) Mechanical model of
brain convolutional development. Science 189:18 -21.

Rajimehr R, Tootell RB (2009) Does retinotopy influence cortical folding in primate
visual cortex?. J Neurosci 20(36): 11149-11152.

Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring
in the central nervous system. Nature 385:313—-318.



The folding cortical surface has been traditionally an intriguing topic in
the neuroscience field. Many researchers have studied about why the
cortical surfaces are folded and bended during their development,
which is so called as ‘gyrogenesis’ or ‘gyrification’. Among many theories
related to the ‘gyrification’, it is firmly entrenched that cortical surface
folding is a process for maximizing the surface area, which could be
considered as the amount of neuronal layer of neocortex, as constrained
by limited brain volume and non deformable neighboring structures
[David P. Richman et al., Science 1975]. However this sort of a simple
reasoning seems to miss the core mechanism hidden in the gyrification.

Early genetic studies have suggested that the cortical buckling has partly
determined by genetic factors. AJ Bartley et al have researched the
cortical gyral patterns controlled by genetic factors using monozygotic
and same-sex dizygotic twins. The result of their research has shown
that genes give a considerable effect to variations in gyral patterns
[Bartley et al, Brain 1997]. On the other hand, the theory of Mima and
Mikawa has suggested that the gyrification pattern partly depends on
nonuniform distribution of neuronal differentiation and neurite growth
[Mima T., Mikawa T Dev Dyn 2004].



in addition to the genetic studies about gyrification, the mechanical
modeling of actual forces and tension which make the cortical surface folded
has been researched. In one research, a mechanical analysis of the elastic
behavior of cortical surface during development has revealed that
gyrification would be developed if the stress parameters, which were set up
in their model, will be increased [David P. Richman et al., Science 1975].
Roberto Toro et al. have proposed the convolution of mammalian cortex is
natural mechanical consequence of neuronal differentiation and growth
through their simulation. They explained two fundamental mechanical
properties which take participate in the cortical folding: one is ‘elasticity’ (a
recovery of initial shape) and the other is ‘plasticity’ (permanent change of
the shape). Through the computational simulation for showing the result
about the effect of these mechanical properties on cortical surface, they
have revealed that as the development of neuronal cell progresses, the
convolutions become accommodated in the cortical layer due to the
influence of non-isotropic forces [Roberto Toro, Yves Burnod, Cerebral Cortex
2005]. Plausible examples of such non-isotropic force and tension are cell
division, cell migration, myelination, cortical connectivity, synaptic pruning
and all of which may interact [Crino, P.B. & J. Eberwine J Neurosci Res 1997]
[Cardoso C et al, Human Mutation 2002]
[http://en.citizendium.org/wiki/Gyrification]



Congenital malformation of frontoparietal polymicrogyria from
smaller number of convolutions in the cerebral cortex led to
profound cognitive abnormalities (Rakic, 2004) Folding patterns have
sexual difference (Luders et al., 2005). Patients with psychiatric
disorder such as bipolar disorder, autism, which are suspected to
neurodevelopmental disease, have abnormal gyrification in specific
lobes (Mirakhur et al., 2001; Liao et al., 2008; Kates et al., 2009).
Genetic determination (Rakic, 2004; Kippenhan et al., 2005) and/ or
the differential effects of gonadal hormones during brain growth
throughout lifetime are likely to affect the gender-specific
emergence of local gyrification (Thompson et al., 2001).



Cortical folding started from16 weeks in utero, and most cortical folding is
principally defined in the late second and third trimesters of fetal life
(Richman et al., 1975; Armstrong et al., 1995). Remarkable aspects of
cortical development are that none of the constituent neurons are
generated within the cortex. Rather, cortical neurons originated from
ventricular and subventricular zones lining the cerebra cavity and then
migrate to their proper laminar and settle in. This process depends on the
transient scaffolding formed by shafts of elongated radial glial cells that
span the fetal cerebral wall (Rakic, 1974; 1988).

Richman et al. (1975) reported greater expansion of outer vs. inner cortical
layers cause gyrification. Another theory proposed by Rakic (1988)
indicated that cortical folding results from intracortical connections. More
recently, Van Essen (1997) suggested tension along axons produce gyri
between strongly connected cortical regions and sulci between

weakly connected weakly.



Jarang Hahm

One hypothesis of the (primary) convolution is the result of cerebral cortex growth within
the limitation of cranial volume. However, Toro and Burnod(2005) found that the
convolutions are a natural outcome of cortical growth when they simulated their model for

the development of cortical convolution

|. Symmetric Il. Development [ll. Accommodation
growth

Development of convolution in model. As a results, the convolution was induced by
convolution development itself. Three main steps are distinguished, symmetric growth,
development, accommodation. In the last step, the convolutions (a, b) are fused into

single one (ab).




HW19: Discriminate/classify cortical surfaces
(autism vs. control) by using the spherical harmonic
coefficients up to degree 40. Using only spherical
harmonic coefficients, do you think you can localize
the region of cortical shape difference? Discuss.
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HW20: Only using 5 spherical harmonic basis Y_Im(0,0,..),
Y Im(1,1,...), Y _Im(2,2,...), Y _Im(3,3,...), Y _Im(4,4,...), write
codes for performing the least squares approximation of
estimating cortical thickness on a unit sphere. Find the
best linear combination of 5 basis that give the
smallest SSE among all possible combinations up to
degree 60. Note: there are total 41”2 basis. So there

are 4172 choose 5 possibilities.



This is a problem you can’t possibly solve using brute force approaches. Need to come up
with either sampling or optimal branching strategy.

S.G. Kim

The computed SSE for this combination is 1.5128e+04, and the computation 0.0394
seconds with Intel® Core™2 Duo CPU @ 2.99GHz with 2.00 GB RAM. Then the
estimated calculation time would be 2.3359e+14 seconds, i.e. 7 MILLION and 407.1
thousand YEARS.



HW21: Compute the Jacobian determinant.

S.G. Kim

du; u; (Xo+Axj)—u; (X
— (XO) = iXo ])_ i(Xo) if Xo is on the either edge of the field
OX; (Xo+Axj)—Xo

~ UiXo+Axj)—u;(Xo) |, ui(Xo—Axj)—u;(Xo)

- - if X, isin the interior of the field
2((Xo+Axj)—Xo) 2((Xo—Axj)—Xo) °

This is the average of two different finite difference
estimation. Improves the stability.



HW22: Determine if the Jacobian determinant of a deformation
is normal or lognormal in distribution. Why is this an important
problem in applications?

Yanovsky et al. (2007) proposed an unbiased fluid image registration
approach(Unbiased Registration Constraint). Contrary to classical
methods for which the term unbiased is used in the sense of
symmetric registration, unbiased means that the Jacobian
determinants of the deformations recovered between a pair of
images follow a log-normal distribution, with zero mean after log-
transformation. The authors argued that this distribution is beneficial
when recovering change in regions of homogeneous intensity, and in
ensuring symmetrical results when the order of two images being
registered is switched. The inverse-consistent property of the
unbiased technigue was shown in a validation study of the unbiased
fluid registration methods (Yanovsky, 2008).
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Figure 1. Examples of normal and log-normal distributions. While the
distribution of the heights of 1052 women (a, in inches; Snedecor and
Cochran 1989) fits the normal distribution, with a goodness of fitp value of
0.75, that of the content of hydroxymethylfurfurol (HMF, mg-kg') in 1573
honey samples (b; Renner 1970) fits the log-normal © = 0.41) but not the
normal (p = 0.0000). Interestingly, the distribution of the heights of women
fits the log-normal distribution equally well p = 0.74).
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