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1. Group A consists of 3 people and group B consists of 2 pedjetical thickness for group A is
1, 2 and 3 mm for some cortical region. Cortical thicknesgyfmup B is 1 and 2 mm. Estimate
the thickness of group A using the least squares method. Wlta¢ sum of squared error (SSE)
of your estimation? Set up a general linear model testingdomlity of cortical thickness between
the two groups, and compute the actual F-statistic value.

Solution.Let A be the cortical thickness of group A. Then we need to solve
(1,2,3) = (1,1,1)'\.
This is easily solved by noting that

A= [(1,1,1)(1,1,1)]71(1,1,1)(1,2,3) = 2.

The sum of squared errors (SSE) of the estimation is then

SSE=(1-2*+(2-2*+(3-2)?%=2.

We have the following linear model
thick; = A + 3 - group,,

where the dummy variablgroup, is 0 for group A and 1 for group B. So we have the group
variable to b0, 0,0, 1, 1). We test for the group effect;, = 0.

For the reduced model{ = 0), the estimation\, = 1.8. The corresponding SQE= 2.8. For the
full model, \; = 2, 3, = —0.5. The corresponding SSE= 2.5. The F-stat is given by

(SSEy — SSEy)/1
28/(5—1—1)

= 0.3214.

Thep-value isl —fcdf(F, 1,3) = 0.6104. If you used(1, 1, 0, 0, 0) for the group variable, you get
the same answers except for the estimation for the full medgightly different at\; = 1.5 61
0.5.



2. Given a T1l-weighted MRI of brain, the proportions of gragttar and white matter in the image
are 0.7 and 0.3 respectively. Then explain why we can modsgémtensity values as the mixture
of two Gaussian components with mixing proportions 0.7 ald 0

Solution. Thenk-components mixture model on image intensity values assarage intensity
valuesY to come fromk different distributionsf; with proportionsp;. This can be modeled
by conditioning on a multinomial distribution. Another way saying this is that the thé-
components mixture model can be obtained by mixing samgésireed from distributiong;
with p; proportions.

Let X, be an indicator variable for thgth class such thaP(X; = 1) = p; and P(X; = 0) =

1 — p;. The collection of variables{ = (Xj,---, X)) form a multinomial distribution with
parametersgp,, - - - , pi) if we have constraink’; + - - - + X ) = 1. The probability mass function
of the multinomial distribution is given by

f(x17... 71']{:) :pfl p‘zk

We define a random variabl¢ conditionally on the evenk; = 1 such thaty” ~ f; if X; = 1.
The conditional densityf (y|z; = 1) = f; is the distribution for thej-th class. Then the joint
density is given byf(z; = 1,y) = p, f;(y) for eachj, which can be compactly written as

flx,y) = [po i)™ - - [pefu(y)] >

The marginal density of” is trivially then
k
fly) = Zf(xvy) = Zpifi(y)'
T =1

3. Evaluate kernel smoothing * I at the pixel position (2,2). Note that at (2,2), image intgns
value is -2. Why heat kernel smoothing is used for corticadkiess data instead of Gaussian
kernel smoothing?

Solution.K x1(2,2) = —1/8. Gaussian kernel is defined A5 (p, q) exp[—%], where||p—q||

is the Euclidian distance betwegrandq. Since a cortical surface is not Euclidian, the kernel is
not defined along the cortical surface. So we need to refinkeimel using the geodesic distance
rather than the Euclidian distance. Then the kernel becdheebeat kernel and we have heat
kernel smoothing instead of Gaussian kernel smoothing.

4. Determine the fractional anisotropy (FA) index. Thedaling MATLAB code is provided. What
does FA value measure?

Solution.FA measures the degree of anisotropy of water diffusion iteniatter fibers. It varies
from zero to one and obtains 0 when all eigenvalues are endigating isotropy of diffusion. It

is defined as FA= \/g\/(h_”j/’;gf;f:@rw. This definition normalizes FA values properly
1 2 3

between 0 and 1. The definition of FA originally given in Basaed Pierpaoli (1998) does not
normalize properly. Note that FA is O if all eigenvalues afentical and 1 if two eigenvalues are
all zero. Based on this defintion, we obtain FA = 0.3536 formablem.




5. Given the following two brain connectivity graphs A andvijte down the adjacency matrices.
Write down the degree distributions. Compute the clusgecimefficients. Which brain network is
more complex?

Solution.The adjacency matrix for the graph A is

0100
1011
0101
01 10
while that of the graph B is
0100
1 011
0100
0100

One can also define adjacency matrices in such a way thataligigonal terms are 1. Obviously
a given node is connected to itself by definition. Adjacen@trines are symmetric. The degrees
computed by summing of either row or column vectors. At nddes, 3,4), degrees are given by
by (1,3,2,2) and(1, 3,1, 1). Hence the degree distributions &te2, 1) and(3,0, 1).

There are many different definitions olustering coefficientsWe follow the defintion of Watts
and Strogatz (1998) where the clustering coefficient ofitienode is given by

_ # of triangles connected to node
" 4 of triples centered on node

Triples are three connected nodes. For nodes with degred @,ame define’; = 0. Then we
have(0,1/3,1,1) and(0, 0, 0, 0) for the graphsA and B. The clustering coefficient of a graph is

given by
1 n
C - E i:EI Cz

So we have”'y, = 7/14 andCi = 0. So the grap is considered more complex.

6. Given a deformation fieltlr, y)’ — (2o — 2y + 1, x4+ 4y — 1)’ for warping 2D image A to another
2D image B, determine the displacement vector field. Deteenthhe Jacobian determinant at
(0,0). Is the pixel at (0,0) in image A shrinking or enlargungder the deformation? What is the
main difference between deformation-based morphometBMPand tensor-based morphometry
(TBM)?

Solution.The displacement vector field is simply given by
u=2r—-2y+l,o+4y—1)—(z,y) =(r—2y+ 1,2+ 3y —1).

The displacement gradient is given by

agfwzc _32)'




The Jacobian matriy is then
g 2 =2
1 4
and its determinant is 10. Hence we have huge volume enlange™BM uses the relative spatial
position difference while TBM uses spatial derivatives lvaacterizing anatomical difference.



